
Chapter 5 Adversarial Search
5.1 – 5.4 Deterministic games

CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University



Outline

Two-person games

Perfect play
Minimax decisions
α− β pruning

Resource limits and approximate evaluation

(Games of chance)

(Games of imperfect information)



Two-person games

I Games have always been an important application area for
heuristic algorithms.

I The games that we will look at in this course will be
two-person board games such as Tic-tac-toe, Chess, or Go.

I We assume that the opponent is “unpredictable” but will try
to maximize the chances of winning.

I In most cases, the search tree cannot be fully explored. There
must be a way to approximate a subtree that was not
generated.



Two-person games (cont’d)

Several programs that compete with the best human players:

I Checkers: beat the human world champion

I Chess: beat the human world champion

I Backgammon: at the level of the top handful of humans

I Othello: good programs

I Hex: good programs

I Go: no competitive programs until 2008



Types of games

Deterministic Chance

Perfect information Chess, checkers, Backgammon
go, othello , monopoly

Imperfect information Battleships, Bridge, poker, scrabble
Minesweeper “video games”



Game tree for tic-tac-toe (2-player, deterministic, turns)



A variant of the game Nim

I A number of tokens are placed on a table between the two
opponents.

I A move consists of dividing a pile of tokens into two
nonempty piles of different sizes.

I For example, 6 tokens can be divided into piles of 5 and 1 or 4
and 2, but not 3 and 3.

I The first player who can no longer make a move loses the
game.



The state space for Nim



Exhaustive Minimax for Nim



Search techniques for 2-person games

I The search tree is slightly different: It is a two-ply tree where
levels alternate between players

I Canonically, the first level is “us” or the player whom we want
to win.

I Each final position is assigned a payoff:
I win (say, 1)
I lose (say, -1)
I draw (say, 0)

I We would like to maximize the payoff for the first player,
hence the names MAX and MIN.



The search algorithm

I The algorithm called the Minimax algorithm was invented by
Von Neumann and Morgenstern in 1944, as part of game
theory.

I The root of the tree is the current board position, it is MAXs
turn to play.

I MAX generates the tree as much as it can, and picks the best
move assuming that MIN will also choose the moves for
herself.



The Minimax algorithm

I Perfect play for deterministic, perfect information games.

I Idea: choose to move to the position with the highest
mimimax value.
Best achievable payoff against best play.



Minimax example



Minimax algorithm pseudocode

function Minimax-Decision (state)
returns an action

return argmaxa∈Actions(s) Min-Value(Result(state, a))

function Max-Value (state)
returns a utility value

if Terminal-Test(state) then return Utility(state)
v ← −∞
for each a in Actions(state) do

v ← Max(v ,Min-Value(Result(state, a)))
return v

function Min-Value (state)
returns a utility value

if Terminal-Test(state) then return Utility(state)
v ←∞
for each a in Actions(state) do

v ← Min(v ,Max-Value(Result(state, a)))
return v



Properties of minimax

I Complete: Yes (if the tree is finite)
chess has specific rules for this

I Time: O(bm)

I Space: O(bm) with depth-first exploration

I Optimal: Yes, against an optimal opponent. Otherwise ??

For chess, b ≈ 35,m ≈ 100 for “reasonable games. The same
problem with other search trees: the tree grows very quickly,
exhaustive search is usually impossible.
But do we need to explore every path?
Solution: Use α− β pruning



α− β pruning example



α− β pruning example



α− β pruning example



α− β pruning example



α− β pruning example



Why is it called α− β?

α is the best value to MAX found so far off the current path.
If V is worse than α then MAX will avoid by by pruning that
branch.
Define β similarly for MIN.



The α− β algorithm

function Alpha-Beta Search (state) returns an action
v ← Max-Value (state, −∞,∞)
return the action in Actions(state) with value v

function Max-Value (state, α, β) returns a utility value
if Terminal-Test(state) then return Utility(state)
v ← −∞
for each a in Actions(state) do

v ← Max(v ,Min-Value (Result(state, a),α, β)
if v ≥ β then return v
α← Max(α, v)

return v

function Min-Value (state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v ← +∞
for each a in Actions(state) do

v ← Min(v ,Max-Value (Result(state, a),α, β)
if v ≤ α then return v
α← Min(α, v)

return v



Properties of α− β

I A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

I Pruning does not affect the final result

I Good move ordering improves the effectiveness of pruning

I With “perfect ordering,” time complexity = O(bm/2)
doubles solvable depth

I Unfortunately, 3550 is still impossible!



Resource limits

I The Minimax algorithm assumes that the full tree is not
prohibitively big

I It also assumes that the final positions are easily identifiable.
I Use a two-tiered approach to address the first issue

I Use Cutoff-Test instead of Terminal-Test
e.g., depth limit

I Use Eval instead of Utility
i.e., evaluation function that estimates desirability of position



Evaluation function for tic-tac-toe



Evaluation function for chess

For chess, typically linear weighted sum of features:
Eval(s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

∑n
i=1 wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) - (number of black queens)



Deterministic games in practice

I Checkers: Chinook ended 40-year-reign of human world
champion Marion Tinsley in 1994. Used an endgame database
defining perfect play for all positions involving 8 or fewer
pieces on the board, a total of 443,748,401,247 positions.

I Chess: Deep Blue defeated human world champion Gary
Kasparov in a six- game match in 1997. Deep Blue searches
200 million positions per second, uses very sophisticated
evaluation, and undisclosed methods for extending some lines
of search up to 40 ply.

I Othello: human champions refuse to compete against
computers. Computers are too good.

I Go: human champions refuse to compete against computers.
Computers are too bad.
In Go, b > 300. Most programs used pattern knowledge bases
to suggest plausible moves. Recent programs used Monte
Carlo techniques.



Nondeterministic games: backgammon



Nondeterministic games in general

Chance is introduced by dice, card shuffling.



Algorithms for nondeterministic games

I Expectiminimax gives perfect play.

I As depth increases, probability of reaching a given node
shrinks, the value of lookahead is diminished.

I α− β is less effective.

I TDGAmmon uses depth 2 search and a very good evalution
function. It is at the world-champion level.



Games of imperfect information

I E.g., card games where the opponent’s cards are not known.

I Typically, we can calculate a probability for each possible deal.

I Idea: Compute the minimax value for each action in each
deal, then choose the action with highest expected value over
all deals.

I However, the intuition that the value of an action is the
average of its values in all actual states is not correct.



Summary

I Games are fun to work on!
I They illustrate several important points about AI

I perfection is unattainable, must approximate
I good idea to think about what to think about
I uncertainty constrains the assignment of values to states
I optimal decisions depend on information state, not real state

I Games are to AI as grand prix racing is to automobile design



Sources for the slides

I AIMA textbook (3rd edition)

I AIMA slides (http://aima.cs.berkeley.edu/)

I Luger’s AI book (5th edition)

I Tim Huang’s slides for the game of Go

I Othello web sites
www.mathewdoucette.com/artificialintelligence
home.kkto.org:9673/courses/ai-xhtml

I Hex web sites
hex.retes.hu/six
home.earthlink.netṽanshel
cs.ualberta.ca/̃javhar/hex
www.playsite.com/t/games/board/hex/rules.html


	Two-person games
	Perfect play
	Minimax decisions
	- pruning

	Resource limits and approximate evaluation
	(Games of chance)
	(Games of imperfect information)

