Chapter 5 Adversarial Search
 5.1 - 5.4 Deterministic games

CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science Michigan Technological University

Outline

Two-person games

Perfect play
Minimax decisions
$\alpha-\beta$ pruning

Resource limits and approximate evaluation
(Games of chance)
(Games of imperfect information)

Two-person games

- Games have always been an important application area for heuristic algorithms.
- The games that we will look at in this course will be two-person board games such as Tic-tac-toe, Chess, or Go.
- We assume that the opponent is "unpredictable" but will try to maximize the chances of winning.
- In most cases, the search tree cannot be fully explored. There must be a way to approximate a subtree that was not generated.

Two-person games (cont'd)

Several programs that compete with the best human players:

- Checkers: beat the human world champion
- Chess: beat the human world champion
- Backgammon: at the level of the top handful of humans
- Othello: good programs
- Hex: good programs
- Go: no competitive programs until 2008

Types of games

	Deterministic	Chance
Perfect information	Chess, checkers, go, othello ,	Backgammon monopoly
Imperfect information	Battleships, Minesweeper	Bridge, poker, scrabble "video games"

Game tree for tic-tac-toe (2-player, deterministic, turns)

A variant of the game Nim

- A number of tokens are placed on a table between the two opponents.
- A move consists of dividing a pile of tokens into two nonempty piles of different sizes.
- For example, 6 tokens can be divided into piles of 5 and 1 or 4 and 2, but not 3 and 3 .
- The first player who can no longer make a move loses the game.

The state space for Nim

Exhaustive Minimax for Nim

Search techniques for 2-person games

- The search tree is slightly different: It is a two-ply tree where levels alternate between players
- Canonically, the first level is "us" or the player whom we want to win.
- Each final position is assigned a payoff:
- win (say, 1)
- lose (say, -1)
- draw (say, 0)
- We would like to maximize the payoff for the first player, hence the names MAX and MIN.

The search algorithm

- The algorithm called the Minimax algorithm was invented by Von Neumann and Morgenstern in 1944, as part of game theory.
- The root of the tree is the current board position, it is MAXs turn to play.
- MAX generates the tree as much as it can, and picks the best move assuming that MIN will also choose the moves for herself.

The Minimax algorithm

- Perfect play for deterministic, perfect information games.
- Idea: choose to move to the position with the highest mimimax value.
Best achievable payoff against best play.

Minimax example

Minimax algorithm pseudocode

function Minimax-Decision (state)
returns an action
return $\operatorname{argmax}_{a \in \operatorname{Actions(s)}} \operatorname{Min-VALUE}(\operatorname{Result}($ state, a))
function Max-Value (state)
returns a utility value
if Terminal-Test(state) then return Utility(state)
$v \leftarrow-\infty$
for each a in Actions(state) do

$$
v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(\operatorname{Result}(s t a t e, a)))
$$

return v
function Min-Value (state)
returns a utility value
if Terminal-Test(state) then return Utility(state)
$v \leftarrow \infty$
for each a in Actions(state) do

```
v}\leftarrow\operatorname{Min}(v,Max-Value(Result(state, a)))
```

return v

Properties of minimax

- Complete: Yes (if the tree is finite) chess has specific rules for this
- Time: $O\left(b^{m}\right)$
- Space: $O(b m)$ with depth-first exploration
- Optimal: Yes, against an optimal opponent. Otherwise ??

For chess, $b \approx 35, m \approx 100$ for "reasonable games. The same problem with other search trees: the tree grows very quickly, exhaustive search is usually impossible.
But do we need to explore every path?
Solution: Use $\alpha-\beta$ pruning

$\alpha-\beta$ pruning example

Why is it called $\alpha-\beta$?

α is the best value to MAX found so far off the current path. If V is worse than α then MAX will avoid by by pruning that branch.
Define β similarly for MIN.

The $\alpha-\beta$ algorithm

function Alpha-Beta Search (state) returns an action
$v \leftarrow$ Max-Value (state, $-\infty, \infty$)
return the action in Actions(state) with value v
function MAX-VALUE (state, α, β) returns a utility value if Terminal-Test(state) then return Utility(state)

$$
v \leftarrow-\infty
$$

for each a in Actions(state) do
$v \leftarrow \operatorname{Max}(v, \operatorname{Min}-V a l u e ~(R e s u l t(s t a t e, ~ a), ~ \alpha, \beta)$
if $v \geq \beta$ then return v
$\alpha \leftarrow \operatorname{MAX}(\alpha, v)$
return v
function Min-Value (state) returns a utility value
if Terminal-Test(state) then return Utility(state)
$v \leftarrow+\infty$
for each a in Actions(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{Max}-V a l u E(\operatorname{Result}($ state, $a), \alpha, \beta)$
if $v \leq \alpha$ then return v
$\alpha \leftarrow \operatorname{Min}(\alpha, v)$
return v

Properties of $\alpha-\beta$

- A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)
- Pruning does not affect the final result
- Good move ordering improves the effectiveness of pruning
- With "perfect ordering," time complexity $=O\left(b^{m / 2}\right)$ doubles solvable depth
- Unfortunately, 35^{50} is still impossible!

Resource limits

- The Minimax algorithm assumes that the full tree is not prohibitively big
- It also assumes that the final positions are easily identifiable.
- Use a two-tiered approach to address the first issue
- Use Cutoff-Test instead of Terminal-Test e.g., depth limit
- Use Eval instead of Utility
i.e., evaluation function that estimates desirability of position

Evaluation function for tic-tac-toe

X has 6 possible win paths:

X has 4 possible win paths; O has 6 possible wins

$$
E(n)=4-6=-2
$$

X has 5 possible win paths;
O has 4 possible wins
$E(n)=5-4=1$

Evaluation function for chess

Black to move
White slightly better

White to move
Black winning

For chess, typically linear weighted sum of features:
$\operatorname{Eval}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s) \sum_{i=1}^{n} w_{n} f_{n}(s)$
e.g., $w_{1}=9$ with
$f_{1}(s)=$ (number of white queens) - (number of black queens)

Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of $443,748,401,247$ positions.
- Chess: Deep Blue defeated human world champion Gary Kasparov in a six- game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers. Computers are too good.
- Go: human champions refuse to compete against computers. Computers are too bad. In Go, $b>300$. Most programs used pattern knowledge bases to suggest plausible moves. Recent programs used Monte Carlo techniques.

Nondeterministic games: backgammon

Nondeterministic games in general

Chance is introduced by dice, card shuffling.

Algorithms for nondeterministic games

- Expectiminimax gives perfect play.
- As depth increases, probability of reaching a given node shrinks, the value of lookahead is diminished.
- $\alpha-\beta$ is less effective.
- TDGAmmon uses depth 2 search and a very good evalution function. It is at the world-champion level.

Games of imperfect information

- E.g., card games where the opponent's cards are not known.
- Typically, we can calculate a probability for each possible deal.
- Idea: Compute the minimax value for each action in each deal, then choose the action with highest expected value over all deals.
- However, the intuition that the value of an action is the average of its values in all actual states is not correct.

Summary

- Games are fun to work on!
- They illustrate several important points about AI
- perfection is unattainable, must approximate
- good idea to think about what to think about
- uncertainty constrains the assignment of values to states
- optimal decisions depend on information state, not real state
- Games are to Al as grand prix racing is to automobile design

Sources for the slides

- AIMA textbook (3 ${ }^{\text {rd }}$ edition)
- AIMA slides (http://aima.cs.berkeley.edu/)
- Luger's AI book (5 ${ }^{\text {th }}$ edition)
- Tim Huang's slides for the game of Go
- Othello web sites
www.mathewdoucette.com/artificialintelligence home.kkto.org:9673/courses/ai-xhtml
- Hex web sites hex.retes.hu/six home.earthlink.netṽanshel cs.ualberta.ca/javhar/hex www.playsite.com/t/games/board/hex/rules.html

