Chapter 5 Adversarial Search
5.1 – 5.4 Deterministic games

CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University
Outline

Two-person games

Perfect play
 Minimax decisions
 $\alpha - \beta$ pruning

Resource limits and approximate evaluation

(Games of chance)

(Games of imperfect information)
Two-person games

- Games have always been an important application area for heuristic algorithms.
- The games that we will look at in this course will be two-person board games such as Tic-tac-toe, Chess, or Go.
- We assume that the opponent is “unpredictable” but will try to maximize the chances of winning.
- In most cases, the search tree cannot be fully explored. There must be a way to approximate a subtree that was not generated.
Several programs that compete with the best human players:

- Checkers: beat the human world champion
- Chess: beat the human world champion
- Backgammon: at the level of the top handful of humans
- Othello: good programs
- Hex: good programs
- Go: no competitive programs until 2008
Types of games

<table>
<thead>
<tr>
<th></th>
<th>Deterministic</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect information</td>
<td>Chess, checkers, go, othello,</td>
<td>Backgammon, monopoly</td>
</tr>
<tr>
<td>Imperfect information</td>
<td>Battleships, Minesweeper</td>
<td>Bridge, poker, scrabble “video games”</td>
</tr>
</tbody>
</table>
Game tree for tic-tac-toe (2-player, deterministic, turns)
A variant of the game Nim

- A number of tokens are placed on a table between the two opponents.
- A move consists of dividing a pile of tokens into two nonempty piles of different sizes.
- For example, 6 tokens can be divided into piles of 5 and 1 or 4 and 2, but not 3 and 3.
- The first player who can no longer make a move loses the game.
The state space for Nim

```
+---+---+---+
| 7 | 6-1| 5-2 |
+---+---+---+
 |   |   |   |
+---+---+---+
| 4-3| 5-1-1| 4-2-1|
+---+---+---+
 |   |   |   |
+---+---+---+
| 3-3-1| 3-2-2| 2-2-2-1|
+---+---+---+
 |   |   |
+---+---+
| 3-1-1-1-1| 2-2-1-1-1|
+---+---+
 |   |
+---+
| 2-1-1-1-1-1|
+---+
```
Exhaustive Minimax for Nim
Search techniques for 2-person games

- The search tree is slightly different: It is a *two-ply tree* where levels alternate between players.
- Canonically, the first level is “us” or the player whom we want to win.
- Each final position is assigned a payoff:
 - win (say, 1)
 - lose (say, -1)
 - draw (say, 0)
- We would like to maximize the payoff for the first player, hence the names MAX and MIN.
The search algorithm

- The algorithm called the *Minimax algorithm* was invented by Von Neumann and Morgenstern in 1944, as part of game theory.
- The root of the tree is the current board position, it is MAX's turn to play.
- MAX generates the tree as much as it can, and picks the best move assuming that MIN will also choose the moves for herself.
The Minimax algorithm

- Perfect play for deterministic, perfect information games.
- Idea: choose to move to the position with the highest minimax value.
 Best achievable payoff against best play.
Minimax example
Minimax algorithm pseudocode

function Minimax-Decision (state)
returns an action
 return \arg\max_{a \in \text{Actions}(s)} \text{Min-Value(Result(state, a))}

function Max-Value (state)
returns a utility value
 if Terminal-Test(state) then return Utility(state)
 \nu \leftarrow -\infty
 for each a in Actions(state) do
 \nu \leftarrow \max(\nu, \text{Min-Value(Result(state, a)))}
 return \nu

function Min-Value (state)
returns a utility value
 if Terminal-Test(state) then return Utility(state)
 \nu \leftarrow \infty
 for each a in Actions(state) do
 \nu \leftarrow \min(\nu, \text{Max-Value(Result(state, a)))}
 return \nu
Properties of minimax

- **Complete:** Yes (if the tree is finite) chess has specific rules for this
- **Time:** $O(b^m)$
- **Space:** $O(bm)$ with depth-first exploration
- **Optimal:** Yes, against an optimal opponent. Otherwise ??

For chess, $b \approx 35, m \approx 100$ for "reasonable games. The same problem with other search trees: the tree grows very quickly, exhaustive search is usually impossible. But do we need to explore every path? Solution: Use $\alpha - \beta$ pruning
$\alpha - \beta$ pruning example

```
MAX

MIN

3
12
8
```

≥ 3
α − β pruning example
$\alpha - \beta$ pruning example
\(\alpha - \beta\) pruning example
$\alpha - \beta$ pruning example

```
  MAX
    3
    12
    8
    2

  MIN
    3
    14
    5
    2
```

Symbols:
- MAX
- MIN
- α
- β
- \times

Example tree with pruning:

- MAX at depth 1: 3
- MIN at depth 1: 3
- MAX at depth 2: 12
- MIN at depth 2: 8
- MAX at depth 3: 2
- MIN at depth 3: 14
- MAX at depth 4: 5
- MIN at depth 4: 2
Why is it called $\alpha - \beta$?

α is the best value to MAX found so far off the current path. If V is worse than α then MAX will avoid by pruning that branch.
Define β similarly for MIN.
The $\alpha - \beta$ algorithm

function **Alpha-Beta Search** (*state*) returns an action

$v \leftarrow$ Max-Value (*state*, $-\infty$, ∞)

return the action in Actions(*state*) with value v

function **Max-Value** (*state*, α, β) returns a utility value

if Terminal-Test(*state*) then return Utility(*state*)

$v \leftarrow -\infty$

for each a in Actions(*state*) do

$v \leftarrow$ Max(v, Min-Value (Result(*state*, a), α, β))

if $v \geq \beta$ then return v

$\alpha \leftarrow$ Max(α, v)

return v

function **Min-Value** (*state*) returns a utility value

if Terminal-Test(*state*) then return Utility(*state*)

$v \leftarrow +\infty$

for each a in Actions(*state*) do

$v \leftarrow$ Min(v, Max-Value (Result(*state*, a), α, β))

if $v \leq \alpha$ then return v

$\alpha \leftarrow$ Min(α, v)

return v
Properties of $\alpha - \beta$

- A simple example of the value of reasoning about which computations are relevant (a form of *metareasoning*)
- Pruning does not affect the final result
- Good move ordering improves the effectiveness of pruning
- With “perfect ordering,” time complexity $= O(b^{m/2})$ doubles solvable depth
- Unfortunately, 35^{50} is still impossible!
Resource limits

- The Minimax algorithm assumes that the full tree is not prohibitively big.
- It also assumes that the final positions are easily identifiable.
- Use a two-tiered approach to address the first issue:
 - Use \texttt{Cutoff-Test} instead of \texttt{Terminal-Test}
 e.g., depth limit
 - Use \texttt{Eval} instead of \texttt{Utility}
 i.e., evaluation function that estimates desirability of position
Evaluation function for tic-tac-toe

X has 6 possible win paths:

O has 5 possible wins:

\[E(n) = 6 - 5 = 1 \]

X has 4 possible win paths;
O has 6 possible wins

\[E(n) = 4 - 6 = -2 \]

X has 5 possible win paths;
O has 4 possible wins

\[E(n) = 5 - 4 = 1 \]
For chess, typically linear weighted sum of features:

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \sum_{i=1}^{n} w_n f_n(s) \]

e.g., \(w_1 = 9 \) with

\[f_1(s) = (\text{number of white queens}) - (\text{number of black queens}) \]
Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

- Othello: human champions refuse to compete against computers. Computers are too good.

- Go: human champions refuse to compete against computers. Computers are too bad.

 In Go, \(b > 300 \). Most programs used pattern knowledge bases to suggest plausible moves. Recent programs used Monte Carlo techniques.
Nondeterministic games: backgammon
Nondeterministic games in general

Chance is introduced by dice, card shuffling.
Algorithms for nondeterministic games

- **Expectiminimax** gives perfect play.
- As depth increases, probability of reaching a given node shrinks, the value of lookahead is diminished.
- $\alpha - \beta$ is less effective.
- **TDGAmmon** uses depth 2 search and a very good evaluation function. It is at the world-champion level.
Games of imperfect information

- E.g., card games where the opponent’s cards are not known.
- Typically, we can calculate a probability for each possible deal.
- Idea: Compute the minimax value for each action in each deal, then choose the action with highest expected value over all deals.
- However, the intuition that the value of an action is the average of its values in all actual states is not correct.
Summary

- Games are fun to work on!
- They illustrate several important points about AI
 - perfection is unattainable, must approximate
 - good idea to think about what to think about
 - uncertainty constrains the assignment of values to states
 - optimal decisions depend on information state, not real state
- Games are to AI as grand prix racing is to automobile design
Sources for the slides

- AIMA textbook (3rd edition)
- AIMA slides (http://aima.cs.berkeley.edu/)
- Luger’s AI book (5th edition)
- Tim Huang’s slides for the game of Go
- Othello web sites
 - www.mathewdoucette.com/artificialintelligence
 - home.kkto.org:9673/courses/ai-xhtml
- Hex web sites
 - hex.retes.hu/six
 - home.earthlink.net/vanshel
 - cs.ualberta.ca/~javhar/hex
 - www.playsite.com/t/games/board/hex/rules.html