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Best-first search

I Remember that the frontier contains the unexpanded nodes

I Idea: use an evaluation function for each node
(the evaluation function is an estimate of “desirability”)

I Expand the most desirable unexpanded node

I Implementation:
Frontier is a queue sorted in decreasing order of desirability

I Special cases:
I Greedy search
I A∗ search



Romania with step costs in km



Greedy search

I Evaluation function
h(n) = estimate of cost from n to the closest goal
h is the heuristic function

I E.g., hSLD(n) = straight-line distance from n to Bucharest

I Greedy search expands the node that appears to be closest to
the goal



Greedy search example

Arad



After expanding Arad

329 374

Sibiu Timisoara

Arad

Zerind

253



After expanding Sibiu

366 380 193

329 374

Arad Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

176



After expanding Fagaras

Bucharest

366 380 193

253 0

329 374

Arad

Sibiu

Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind



Properties of greedy search

I Complete: No — can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

I Time: O(bm), but a good heuristic can give dramatic
improvement

I Space: O(bm) (keeps every node in memory)

I Optimal: No



A∗ search

I Idea: avoid expanding paths that are already expensive

I Evaluation function f (n) = g(n) + h(n)

I g(n) = cost so far to reach n
I h(n) = estimated cost to goal from n
I f (n) = estimated total cost of path through n to goal

I A∗ search uses an admissible heuristic

I if h is an admissible heuristic then
h(n) ≤ h∗(n) where h∗(n) is the true cost from n.

I Also require h(n) ≥ 0, so h(G ) = 0 for any goal G .
I An admissible heuristic is allowed to underestimate, but can

never overestimate cost.
I E.g., hSLD(n) never overestimates the actual road distance.



A∗ search example

Arad

366=0+366



After expanding Arad

Sibiu Timisoara

Arad

Zerind

447=118+329 449=75+374393=140+253



After expanding Sibiu

Arad Fagaras Oradea

Sibiu Timisoara

Arad

Zerind

646=280+366 671=291+380

447=118+329 449=75+374

415=239+176

Rimnicu V.

413=220+193



After expanding Rimnicu Vilcea

Arad Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

Craiova Pitesti Sibiu

646=280+366 671=291+380

526=366+160 553=300+253

447=118+329 449=75+374

417=317+100

415=239+176



After expanding Fagaras

Bucharest

Arad

Sibiu

Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

Craiova Pitesti Sibiu

646=280+366

591=338+253 450=450+0

671=291+380

526=366+160 553=300+253

447=118+329 449=75+374

417=317+100



After expanding Pitesti

Bucharest

Bucharest

Arad

Sibiu

Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

Craiova Pitesti Sibiu

Rimnicu V.Craiova

646=280+366

591=338+253 450=450+0

671=291+380

526=366+160 553=300+253

418=418+0 615=455+160 607=414+193

447=118+329 449=75+374



Optimality of A∗

Theorem: A∗ search is optimal.

Suppose some suboptimal goal G2 has been generated and is in the
queue. Let n be an unexpanded node on a shortest path to an
optimal goal G1.



Proof for the optimality of A∗

n

G1
G2

start

f (G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal
≥ f (n) since h is admissible

Since f (G2) > f (n), A∗ will never select G2 for expansion



Properties of A∗

I Complete: Yes, unless there are infinitely many nodes with
f ≤ f (G )

I Time: Exponential in
(relative error in h × length of solution)

I Space: Keeps all nodes in memory
I Optimal: Yes—cannot expand fi+1 until fi is finished

I A∗ expands all nodes with f (n) < C∗

I A∗ expands some nodes with f (n) = C∗

I A∗ expands no nodes with f (n) > C∗



Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of “misplaced tiles”
h2(n) = total “Manhattan distance”
(i.e., no. of squares from desired location of each tile)

h1(S) = ??
h2(S) = ??



Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of “misplaced tiles”
h2(n) = total “Manhattan distance”
(i.e., no. of squares from desired location of each tile)

h1(S) = 8
h2(S) = 3+1+2+2+3+2+2+3 = 18



Dominance

A “better” heuristic is one that minimizes the effective branching
factor, b∗.

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:
d = 12 IDS = 3,644,035 nodes b∗ = 2.78

A∗(h1) = 539 nodes b∗ = 1.42
A∗(h2) = 113 nodes b∗ = 1.24

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes b∗ = 1.48
A∗(h2) = 1,641 nodes b∗ = 1.26



Relaxed problems

I Admissible heuristics can be derived from the exact solution
cost of a relaxed version of the problem

I If the rules of the 8-puzzle are relaxed so that a tile can move
“anywhere”, then h1(n) gives the shortest solution

I If the rules are relaxed so that a tile can move to “any
adjacent square”, then h2(n) gives the shortest solution

I Key point: the optimal solution cost of a relaxed problem is
no greater than the optimal solution cost of the real problem



Iterative Deepening A* (IDA*)

I Idea: perform iterations of DFS. The cutoff is defined based
on the f -cost rather than the depth of a node.

I Each iteration expands all nodes inside the contour for the
current f -cost, peeping over the contour to find out where the
contour lies.



Summary

I Heuristic search algorithms

I Finding good heuristics for a specific problem is an area of
research

I Think about the time to compute the heuristic



Sources for the slides

I AIMA textbook (3rd edition)

I AIMA slides (http://aima.cs.berkeley.edu/)
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