- No class on Monday (February 1st): I will be travelling to a conference.

- Remember to use the threshold function to check the neural network. The threshold function should output 1 if the weighted sum is GEQ 0, and print 0 otherwise.

\[\begin{align*}
 a &= g(w^T x) \quad \text{threshold function} \\
 y &= \begin{cases}
 1 & \text{if } w^T x \geq 0 \\
 0 & \text{if } w^T x < 0
 \end{cases}
\end{align*} \]

- You need to cast \(y = x^2 \) as a classification problem. You should not be trying to create a network that outputs \(y = x^2 \) given \(x \).

One method is to systematically generate points on a square. Then label, the ones one and above the \(x^2 \) curve positive (1), and the others negative (0).
Search problem

1. initial state \(s \)
2. actions (\(\text{ACTIONS}(s) \)) what actions are available
3. transition model (\(\text{RESULT}(s, a) \)) result of executing action
4. goal (\(\text{GOAL-TEST}(s) \)) \(\langle \text{yes, reached the goal in } s \rangle \)
5. path cost (optional, additive)

\(s \): state \quad a \): action
Search systematically

We are trying to create a framework that can utilize any search technique and can solve any search problem as long as the ACTIONS, RESULT, GOAL-TEST functions are implemented.
Distances between cities in Romania

Tree search algorithms (cont’d)

function Tree-Search (problem, strategy)
returns a solution, or failure

initialize the frontier using the initial state of problem
loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state
 then return the corresponding solution
 expand the chosen node and add the resulting nodes to the frontier
end

Tree search example

Tree search example

Graph search algorithms (cont’d)

function Graph-Search (problem)
returns a solution, or failure

initialize the frontier using the initial state of problem
 initialize the explored set to be empty
loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state
 then return the corresponding solution
 add the node to the explored set
 expand the chosen node and add the resulting nodes to the frontier
 only if not in the frontier or explored set
end

Note: A → shows the lines that are added to the tree search algorithm.