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Brains

» 10! neurons of > 20 types, 1ms-10ms cycle time

» Signals are noisy “spike trains” of electrical potential
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Linear regression
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The graph in (a) shows the data points of price (y) versus
floor space (x) of houses for sale in Berkeley, CA, in July 2009.
The dotted line is a linear function hypothesis that minimizes
squared error: y = 0.232x + 246

The graph in (b) is the plot of the loss function

> j(wixj + wo — yj)? for various values of wy and w.

Note that the loss function is convex, with a single global
mimimum.



Linear classifiers with a hard threshold
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» The plots show two seismic data parameters, body wave
magnitude x; and surface wave magnitute xp.

» Nuclear explosions are shown as black circles. Earthquakes
(not nuclear explosions) are shown as white circles.

» In graph (a), the line separates the positive and negative
examples.



McCulloch-Pitts “unit”
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» Output is a “squashed” linear function of the inputs
aj—g(inj) =g (Zj Wj,faj>
» It is a gross oversimplification of real neurons, but its purpose

is to develop an understanding of what networks of simple
units can do



Activation functions
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» (a) is a step function or threshold function
» (b) is a sigmoid function 1/(1 + e™*)
» Changing the bias weight W ; moves the threshold location



Implementing logical functions

McCulloch and Pitts: every Boolean function can be implemented
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Neural Network structures

» Feed-forward networks: implement functions, no internal state

> single-layer perceptrons
» multi-layer perceptrons
» Recurrent networks: have directed cycles with delays, have
internal state, can oscillate
» (Hopfield networks)
> (Boltzmann machines)



Feed-forward example
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» Feed-forward network: parameterized family of nonlinear
functions

» Output of unit 5 is a5 = g( W375 -as + W475 . 34)
=gWss5-g(Wi3-a1+Wo3-a2)+Wys-g(Wig-a1+Way-a2))

» Adjusting the weights changes the function:
do learning this way!



Single-layer perceptrons

Perceptron output
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» Output units all operate separately — no shared weights

» Adjusting the weights moves the location, orientation, and
steepness of cliff



Expressiveness of perceptrons

» Consider a perceptron where g is the step function
(Rosenblatt, 1957, 1960)

» It can represent AND, OR, NOT, but not XOR
» Minsky & Papert (1969) pricked the neural network balloon

> A perceptron represents a linear separator in input space:
> i Wix;>00rW-x>0

(a) x; and x> (c) x; xor x;



Perceptron learning

» Learn by adjusting weights to reduce error on training set

» The squared error for an example with input x and true
output y is
E=1Er =1y — hy(x))?



Perceptron learning (cont'd)
» Perform optimization search by gradient descent:

OE OErr

87Wj = Erran—Errx— y — gZWxJ

= —Err x g'(in) x x;

» Simple weight update rule: W; «— W, + (a x g’(in)) x Err x x;

» Err =y — hyy =1—1=0= no change

» Err =y — hyy =1 —0=1 = increase w; when x; is positive,
decrease otherwise

» Err =y — hyy =0 — 1= —1= decrease w; when x; is
positive, decrease otherwise

» Perceptron learning rule converges to a consistent function for
any linearly separable data set




Multilayer perceptrons (MLPs)

» Layers are usually fully connected

» Numbers of hidden units are typically chosen by hand

Output units a;
W

Hidden units a
Wiy

Input units ay;



Expressiveness of MLPs

» All continuous functions with 2 layers,
all functions with 3 layers

» Ridge: Combine two opposite-facing threshold functions
» Bump: Combine two perpendicular ridges
» Add bumps of various sizes and locations to fit any surface

» Proof requires exponentially many hidden units




Back-propagation learning

Output layer: same as for single-layer perceptron,

Wj’,' — Wj’,' +a X aj X A;
where A; = Err; x g'(in;)

Hidden layer: back-propagate the error from the output layer:
Aj = g'(inj) 325 wijiAi.

Update rule for weights in hidden layer:
Wi — W, ;i+axaxA.

(Most neuroscientists deny that back-propagation occurs in the brain)



Back-propagation derivation

The squared error on a single example is defined as




Back-propagation derivation (cont'd)
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MLP learners

» MLPs are quite good for complex pattern recognition tasks
» The resulting hypotheses cannot be understood easily

» Typical problems: slow convergence, local minima



Handwritten digit recognition
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3-nearest-neighbor classifier (stored images) = 2.4% error
Shape matching based on computer vision = 0.63% error
400-300-10 unit MLP = 1.6% error

LeNet 768-192-30-10 unit MLP = 0.9% error

Boosted neural network = 0.7% error

Support vector machine = 1.1% error

Current best: virtual support vector machine = 0.56% error

vV vV vV VvV VvV v VY

Humans ~ 0.2% error



Summary

» Brains have lots of neurons;
each neuron = linear—threshold unit (?)

> Perceptrons (one-layer networks) are insufficiently expressive

» Multi-layer networks are sufficiently expressive; can be trained
by gradient descent, i.e., error back-propagation

» Many applications: speech, driving, handwriting, fraud
detection, etc.

» Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged



Sources for the slides

> AIMA textbook (3" edition)

> AIMA slides:
http://aima.cs.berkeley.edu/

» Neuron cell:

http://www.enchantedlearning.com/subjects/anatomy/brain /Neuron.shtml
(Accessed December 10, 2011)
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