
Section 18.7 Artificial Neural Networks

CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University



Outline

Brains

Regression problems

Neural network structures
Single-layer perceptrons
Multilayer perceptrons (MLPs)

Back-propagation learning

Applications of neural networks



Brains

I 1011 neurons of > 20 types, 1ms-10ms cycle time

I Signals are noisy “spike trains” of electrical potential



Linear regression

I The graph in (a) shows the data points of price (y) versus
floor space (x) of houses for sale in Berkeley, CA, in July 2009.

I The dotted line is a linear function hypothesis that minimizes
squared error: y = 0.232x + 246

I The graph in (b) is the plot of the loss function∑
j(w1xj + w0 − yj)

2 for various values of w0 and w1.

I Note that the loss function is convex, with a single global
mimimum.



Linear classifiers with a hard threshold

I The plots show two seismic data parameters, body wave
magnitude x1 and surface wave magnitute x2.

I Nuclear explosions are shown as black circles. Earthquakes
(not nuclear explosions) are shown as white circles.

I In graph (a), the line separates the positive and negative
examples.



McCulloch-Pitts “unit”

I Output is a “squashed” linear function of the inputs

ai ← g(ini ) = g
(∑

j Wj ,iaj

)
I It is a gross oversimplification of real neurons, but its purpose

is to develop an understanding of what networks of simple
units can do



Activation functions

I (a) is a step function or threshold function

I (b) is a sigmoid function 1/(1 + e−x)

I Changing the bias weight W0,i moves the threshold location



Implementing logical functions

McCulloch and Pitts: every Boolean function can be implemented



Neural Network structures

I Feed-forward networks: implement functions, no internal state

I single-layer perceptrons
I multi-layer perceptrons

I Recurrent networks: have directed cycles with delays, have
internal state, can oscillate

I (Hopfield networks)
I (Boltzmann machines)



Feed-forward example

I Feed-forward network: parameterized family of nonlinear
functions

I Output of unit 5 is a5 = g(W3,5 · a3 + W4,5 · a4)
= g(W3,5 ·g(W1,3 ·a1+W2,3 ·a2)+W4,5 ·g(W1,4 ·a1+W2,4 ·a2))

I Adjusting the weights changes the function:
do learning this way!



Single-layer perceptrons

I Output units all operate separately – no shared weights

I Adjusting the weights moves the location, orientation, and
steepness of cliff



Expressiveness of perceptrons

I Consider a perceptron where g is the step function
(Rosenblatt, 1957, 1960)

I It can represent AND, OR, NOT, but not XOR

I Minsky & Papert (1969) pricked the neural network balloon

I A perceptron represents a linear separator in input space:∑
j Wjxj > 0 or W · x > 0



Perceptron learning

I Learn by adjusting weights to reduce error on training set

I The squared error for an example with input x and true
output y is
E = 1

2Err2 ≡ 1
2(y − hW(x))2



Perceptron learning (cont’d)

I Perform optimization search by gradient descent:

∂E

∂Wj
= Err × ∂Err

∂Wj
= Err × ∂

∂Wj

y − g(
n∑

j=0

Wjxj)


= −Err × g ′(in)× xj

I Simple weight update rule: Wj ←Wj + (α× g ′(in))×Err × xj

I Err = y − hW = 1− 1 = 0⇒ no change

I Err = y − hW = 1− 0 = 1⇒ increase wi when xi is positive,
decrease otherwise

I Err = y − hW = 0− 1 = −1⇒ decrease wi when xi is
positive, decrease otherwise

I Perceptron learning rule converges to a consistent function for
any linearly separable data set



Multilayer perceptrons (MLPs)

I Layers are usually fully connected

I Numbers of hidden units are typically chosen by hand



Expressiveness of MLPs

I All continuous functions with 2 layers,
all functions with 3 layers

I Ridge: Combine two opposite-facing threshold functions

I Bump: Combine two perpendicular ridges

I Add bumps of various sizes and locations to fit any surface

I Proof requires exponentially many hidden units



Back-propagation learning

Output layer: same as for single-layer perceptron,

Wj ,i ←Wj ,i + α× aj ×∆i

where ∆i = Err i × g ′(ini )

Hidden layer: back-propagate the error from the output layer:

∆j = g ′(inj)
∑

i wj ,i∆i .

Update rule for weights in hidden layer:

Wk,j ←Wk,j + α× ak ×∆j .

(Most neuroscientists deny that back-propagation occurs in the brain)



Back-propagation derivation

The squared error on a single example is defined as

E =
1

2

∑
i

(yi − ai )
2 ,

where the sum is over the nodes in the output layer.

∂E

∂Wj ,i
= −(yi − ai )

∂ai

∂Wj ,i
= −(yi − ai )

∂g(ini )

∂Wj ,i

= −(yi − ai )g
′(ini )

∂ini

∂Wji

= −(yi − ai )g
′(ini )

∂

∂Wj ,i

∑
j

Wj ,iaj


= −(yi − ai )g

′(ini )aj = −aj∆i



Back-propagation derivation (cont’d)

∂E

∂Wk,j
= −

∑
i

(yi − ai )
∂ai

∂Wk,j
= −

∑
i

(yi − ai )
∂g(ini )

∂Wk,j

= −
∑

i

(yi − ai )g
′(ini )

∂ini

∂Wk,j
= −

∑
i

∆i
∂

∂Wk,j

∑
j

Wy ,iaj


= −

∑
i

∆iWy ,i
∂aj

∂Wk,j
= −

∑
i

∆iWy ,i
∂g(inj)

∂Wk,j

= −
∑

i

∆iWy ,ig
′Jinj)

∂inj

∂Wk,j

= −
∑

i

∆iWy ,ig
′(inj)

∂

∂Wk,j

(∑
k

Wk,jak

)
= −

∑
i

∆iWy ,ig
′(inj)ak = −ak∆j



MLP learners

I MLPs are quite good for complex pattern recognition tasks

I The resulting hypotheses cannot be understood easily

I Typical problems: slow convergence, local minima



Handwritten digit recognition

I 3-nearest-neighbor classifier (stored images) = 2.4% error

I Shape matching based on computer vision = 0.63% error

I 400-300-10 unit MLP = 1.6% error

I LeNet 768-192-30-10 unit MLP = 0.9% error

I Boosted neural network = 0.7% error

I Support vector machine = 1.1% error

I Current best: virtual support vector machine = 0.56% error

I Humans ≈ 0.2% error



Summary

I Brains have lots of neurons;
each neuron ≈ linear–threshold unit (?)

I Perceptrons (one-layer networks) are insufficiently expressive

I Multi-layer networks are sufficiently expressive; can be trained
by gradient descent, i.e., error back-propagation

I Many applications: speech, driving, handwriting, fraud
detection, etc.

I Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged



Sources for the slides

I AIMA textbook (3rd edition)

I AIMA slides:
http://aima.cs.berkeley.edu/

I Neuron cell:
http://www.enchantedlearning.com/subjects/anatomy/brain/Neuron.shtml

(Accessed December 10, 2011)


	Brains
	Regression problems
	Neural network structures
	Single-layer perceptrons
	Multilayer perceptrons (MLPs)

	Back-propagation learning
	Applications of neural networks

