
Sections 18.6 and 18.7
Analysis of Artificial Neural Networks

CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University



Outline

Univariate regression
Linear models
Nonlinear models

Linear classification

Perceptron learning
Multilayer perceptrons (MLPs)
Single-layer perceptrons

Back-propagation learning

Applications of neural networks

Human brain vs. neural networks



Univariate linear regression problem

I A univariate linear function is a straight line with input x and
output y .

I The problem is to “learn” a univariate linear function given a
set of data points.

I Given that the formula of the line is y = w1x + w0, what
needs to be learned are the weights w0,w1.

I Each possible line is called a hypothesis:
h~w = w1x + w0



Univariate linear regression problem (cont’d)

I There are an infinite number of lines that “fit” the data.

I The task of finding the line that best fits these data is called
linear regression.

I “Best” is defined as minimizing ”loss” or “error.”

I A commonly used loss function is the L2 norm where
Loss(h~w ) =

∑N
j=1 L2(yj , h~w (xj)) =∑N

j=1(yj − h~w (xj))2 =
∑N

j=1(yj − (w1xj + w0))2.



Minimizing loss

I Try to find ~w∗ = argmin~wLoss(h~w ).

I To mimimize
∑N

j=1(yj − (w1xj + w0))2, find the partial
derivatives with respect to w0 and w1 and equate to zero.

I ∂
∂w0

∑N
j=1(yj − (w1xj + w0))2 = 0

I ∂
∂w1

∑N
j=1(yj − (w1xj + w0))2 = 0

I These equations have a unique solution:

w1 =
N(

P
xjyj )−(

P
xj )(

P
yj )

N(
P

x2
j )−(

P
xj )2)

w0 = (
∑

yj − w1(
∑

xj))/N.

I Univariate linear regression is a “solved” problem.



Beyond linear models

I The equations for minimum loss no longer have a closed-form
solution.

I Use a hill-climbing algorithm, gradient descent.

I The idea is to always move to a neighbor that is “better.”

I The algorithm is:
~w ← any point in the parameter space
loop until convergence do
for each wi in ~w do
wi ← wi − α ∂

∂wi
Loss(~w)

I α is called the step size or the learning rate.



Solving for the linear case

∂
∂wi

Loss(~w) = ∂
∂wi

(y − h~w (x))2

= 2(y − h~w (x))× ∂
∂wi

(y − h~w (x))

= 2(y − h~w (x))× ∂
∂wi

(y − (w1x + w0))

For w0 and w1 we get: ∂
∂w0

Loss(~w) = −2(y − h~w (x))
∂

∂w1
Loss(~w) = −2(y − h~w (x))× x

The learning rule becomes:
w0 ← w0 + α

∑
j(y − h~w (x)) and

w1 ← w1 + α
∑

j(y − h~w (x))× x



Batch gradient descent

For N training examples, minimize the sum of the individual losses
for each example:
w0 ← w0 + α

∑
j(yj − h~w (xj)) and

w1 ← w1 + α
∑

j(yj − h~w (xj))× xj

I Convergence to the unique global minimum is guaranteed as
long as a small enough α is picked.

I The summations require going through all the training data at
every step, and there may be many steps

I Using stochastic gradient descent only a single training point
is considered at a time, but convergence is not guaranteed for
a fixed learning rate α.



Linear classifiers with a hard threshold

I The plots show two seismic data parameters, body wave
magnitude x1 and surface wave magnitute x2.

I Nuclear explosions are shown as black circles. Earthquakes
(not nuclear explosions) are shown as white circles.

I In graph (a), the line separates the positive and negative
examples.

I The equation of the line is:
x2 = 1.7x1 − 4.9 or −4.9 + 1.7x1 − x2 = 0



Classification hypothesis

I The classification hypothesis is:
h~w = 1 if ~w .~x ≥ 0 and 0 otherwise

I It can be thought of passing the linear function ~w .~x through a
threshold function.

I Mimimizing Loss depends on taking the gradient of the
threshold function

I The gradient for the step function is zero almost everywhere
and undefined elsewhere!



Perceptron learning

A simple weight update rule that is guaranteed to converge for
linearly separable data:

wi ← wi + α(y − h~w (~x))× xi

where
y is the true value, and h~w (~x) is the hypothesis output.



Perceptron learning rule

wi ← wi + α(y − h~w (~x))× xi

I If the output is correct, i.e., y = h~w (~x), then the weights are
not changed.

I If the output is lower than it should be, i.e, y is 1 but h~w (~x) is
0, then wi is increased when the corresponding input xi is
positive and decreased when the corresponding input xi is
negative.

I If the output is higher than it should be, i.e, y is 0 but h~w (~x)
is 1, then wi is decreased when the corresponding input xi is
positive and increased when the corresponding input xi is
negative.



Perceptron learning procedure

I Start with a random assignment to the weights

I Feed the input, let the perceptron compute the answer

I If the answer is correct, do nothing

I If the answer is not correct, update the weights by adding or
subtracting the input vector (scaled down by α)

I Iterate over all the input vectors, repeating as necessary, until
the perceptron learns



Perceptron learning example

This example teaches the logical or function.
a0 is the “bias”, a1 and a2 are the inputs, y is the output.

a0 a1 a2 y

Example 1 1 0 0 0

Example 2 1 0 1 1

Example 3 1 1 0 1

Example 4 1 1 1 1

With α = 0.5 and (0.1, 0.2, 0.3) as the initial weights, the weight
vector converges to (−0.4, 0.7, 0.8) after 4 iterations on the
examples. The number of iterations changes depending on the
initial weights and α (see the spreadsheet).



Expressiveness of perceptrons

I Consider a perceptron where g is the step function
(Rosenblatt, 1957, 1960)

I It can represent AND, OR, NOT, but not XOR
(Minsky & Papert, 1969)

I A perceptron represents a linear separator in input space:∑
j Wjxj > 0 or W · x > 0



Multilayer perceptrons (MLPs)

I Remember that a single perceptron will not converge if the
inputs are not linearly separable.

I In that case, use a multilayer perceptron.

I The numbers of hidden units are typically chosen by hand.



Activation functions

I (a) is a step function or threshold function

I (b) is a sigmoid function 1/(1 + e−x)



Feed-forward example

I Feed-forward network: parameterized family of nonlinear
functions

I Output of unit 5 is a5 = g(W3,5 · a3 + W4,5 · a4)
= g(W3,5 ·g(W1,3 ·a1+W2,3 ·a2)+W4,5 ·g(W1,4 ·a1+W2,4 ·a2))

I Adjusting the weights changes the function:
do learning this way!



Single-layer perceptrons

I Output units all operate separately – no shared weights

I Adjusting the weights moves the location, orientation, and
steepness of cliff



Expressiveness of MLPs

I All continuous functions with 2 layers,
all functions with 3 layers

I Ridge: Combine two opposite-facing threshold functions

I Bump: Combine two perpendicular ridges

I Add bumps of various sizes and locations to fit any surface

I Proof requires exponentially many hidden units



Back-propagation learning

Output layer: similar to a single-layer perceptron

wi ,j ← wi ,j + α× ai ×∆j

where ∆j = Err j × g ′(inj)

Hidden layer: back-propagate the error from the output layer:

∆i = g ′(ini )
∑

j wi ,j∆j

The update rule for weights in hidden layer is the same:

wi ,j ← wi ,j + α× ai ×∆j

(Most neuroscientists deny that back-propagation occurs in the brain)



Handwritten digit recognition

I 3-nearest-neighbor classifier (stored images) = 2.4% error

I Shape matching based on computer vision = 0.63% error

I 400-300-10 unit MLP = 1.6% error

I LeNet 768-192-30-10 unit MLP = 0.9% error

I Boosted neural network = 0.7% error

I Support vector machine = 1.1% error

I Current best: virtual support vector machine = 0.56% error

I Humans ≈ 0.2% error



MLP learners

I MLPs are quite good for complex pattern recognition tasks

I The resulting hypotheses cannot be understood easily

I Typical problems: slow convergence, local minima



Understanding the brain

“The brain is a tissue. It is a complicated, intricately woven tissue,
like nothing else we know of in the universe, but it is composed of
cells, as any tissue is. They are, to be sure, highly specialized cells,
but they function according to the laws that govern any other cells.
Their electrical and chemical signals can be detected, recorded and
interpreted and their chemicals can be identified, the connections
that constitute the brains woven feltwork can be mapped. In short,
the brain can be studied, just as the kidney can.”

– David H. Hubel (1981 Nobel Prize Winner)



Understanding the brain (cont’d)

“Because we do not understand the brain very well we are
constantly tempted to use the latest technology as a model for
trying to understand it. In my childhood we were always assured
that the brain was a telephone switchboard. (What else could it
be?) I was amused to see that Sherrington, the great British
neuroscientist, thought that the brain worked like a telegraph
system. Freud often compared the brain to hydraulic and
electro-magnetic systems. Leibniz compared it to a mill, and I am
told that some of the ancient Greeks thought the brain functions
like a catapult. At present, obviously, the metaphor is the digital
computer.”

– John R. Searle (Prof. of Philosophy at UC, Berkeley)



Summary

I Brains have lots of neurons; each neuron ≈ perceptron (?)

I None of the neural network models distinguish humans from
dogs from dolphins from flatworms. Whatever distinguishes
higher cognitive capacities (language, reasoning) may not be
apparent at this level of analysis.

I Actually, real neurons fire all the time; what changes is the
rate of firing, from a few to a few hundred impulses a second.

I “Neurally inspired computing” rather than “brain science”.

I Perceptrons (one-layer networks) are used for linearly
separable data.

I Multi-layer networks are sufficiently expressive; can be trained
by gradient descent, i.e., error back-propagation.

I Many applications: speech, driving, handwriting, fraud
detection, etc.

I Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged



Sources for the slides

I AIMA textbook (3rd edition)

I AIMA slides:
http://aima.cs.berkeley.edu/

I Neuron cell:
http://www.enchantedlearning.com/subjects/anatomy/brain/Neuron.shtml

(Accessed December 10, 2011)

I Robert Wilensky’s CS188 slides
http://www.cs.berkeley.edu/ wilensky/cs188

(Accessed prior to 2009)


	Univariate regression
	Linear models
	Nonlinear models

	Linear classification
	Perceptron learning
	Multilayer perceptrons (MLPs)
	Single-layer perceptrons

	Back-propagation learning
	Applications of neural networks
	Human brain vs. neural networks

