Chapter 3 Solving Problems By Searching
3.1 =3.4 Uninformed search strategies

(CS4811 - Artificial Intelligence

Nilufer Onder
Department of Computer Science
Michigan Technological University

Outline

Problem-solving agents
Problem formulation

Basic search algorithms
Tree search
Graph search

Evaluating search strategies

Uninformed search strategies
Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search
Bidirectional search

Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-ACGENT (percept)
returns an action
inputs: percept, a percept
private: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «— UPDATE-STATE (state,percept)

if seq is empty then
goal — FORMULATE-GOAL (state)
problem «— FORMULATE-PROBLEM (state, goal)
seq < SEARCH (problem)

if seq = failure then return a null action

action < FIRST (seq)

seq — REST (seq)

return action

Assumptions

» Static: The world does not change unless the agent changes
it.

» Observable: Every aspect of the world state can be seen.

» Discrete: Has distinct states as opposed to continuously
flowing time.

» Deterministic: There is no element of chance.
This is a restricted form of a general agent called offline problem

solving. The solution is executed “eyes closed.”
Online problem solving involves acting without complete knowledge

Example: Traveling in Romania

» On holiday in Romania; currently in Arad
» Flight leaves tomorrow from Bucharest
» Formulate goal:

be in Bucharest

» Formulate problem:
states: various cities
actions: drive between cities

» Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
(any solution or optimal solution?)

Distaces between cities in Romania

Infrastructure for search algorithms

» A problem is defined by five components:

> initial state e.g., “In(Arad)"
» actions, ACTIONS(s) returns the actions applicable in s.
e.g, In Arad, the applicable actions are
{Go(Sibiu), Go(Timisoara), Go(Zerind)}
» transition model, RESULT(s, a) returns the state that results
from executing action a in state s
e.g., REsurT(In(Arad), Go(Zerind)) = In(Zerind).
» goal test, can be
explicit, e.g., x = "In Bucharest”
implicit, e.g., x = “In a city with an international airport”
» path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost of executing action a in state x and
arriving at state y, assumed to be > 0

» A solution is a sequence of actions leading from the initial
state to a goal state

Selecting a state space

» The real world is absurdly complex
= state space must be abstracted for problem solving

> (Abstract) state = set of real states

> (Abstract) action = complex combination of real actions
e.g., "Arad — Zerind” represents a complex set
of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad” must get
to some real state “in Zerind”

» (Abstract) solution =
set of real paths that are solutions in the real world

» Each abstract action should be “easier” than the original
problem!

» Find an abstraction that is valid and useful.

Example: The 8-puzzle

7 2 - 1 2

5 6 - 5

8 3 1 7 8
Start State Goal State

Example: The 8-puzzle (cont'd)

v

states: integer locations of tiles
(ignore intermediate positions)

» actions: move blank left, right, up, down
(ignore unjamming etc.)

v

goal test: = goal state (given)

v

path cost: 1 per move

v

Note that the optimal solution of n-Puzzle family is NP-hard

Tree search algorithms

Basic idea:

offline, simulated exploration of state space

by generating successors of the states that haven't been explored
(a.k.a. expanding states)

Tree search algorithms (cont'd)

function TREE-SEARCH (problem, strategy)
returns a solution, or failure

initialize the frontier using the initial state of problem
loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state

then return the corresponding solution

expand the chosen node and add the resulting nodes to the frontier

end

Tree search example

I N
Arad > _Oradea O
ZaN
e ~

Rimy

Tree search example

Tree search example

Implementation: states vs. nodes

A state is a (representation of) a physical configuration.

A node is a data structure constituting part of a search tree
A node includes: parent, children, depth, path cost g(x).
States do not have parents, children, depth, or path cost!

vV v v v Y

The EXPAND function creates new nodes, filling in the various
fields and using the SUCCESSORE'N of the problem to create
the corresponding states.

Node ACTION = Right

PATH-COST=6

STATE

I
BEo
oo

Repeated states

Failure to detect repeated states can turn a linear problem into an
exponential onel!

®

0
NOD.
C (,:::l-:i\'

&
g
=

Graph search algorithms

Basic idea:
similar to tree-search
keep a separate list of “explored” states

Graph search algorithms (cont'd)

function GRAPH-SEARCH (problem)
returns a solution, or failure

initialize the frontier using the initial state of problem
— initialize the explored set to be empty
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state
then return the corresponding solution

— add the node to the explored set
expand the chosen node and add the resulting nodes to the frontier
— only if not in the frontier or explored set
end

Note: A — shows the lines that are added to the tree search algorithm.

Evaluating search strategies

» A strategy is defined by picking the order of node expansion
» Strategies are evaluated along the following dimensions:

» completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
» space complexity—maximum number of nodes in memory
» optimality—does it always find a least-cost solution?

v

» Time and space complexity are measured in terms of

» b — maximum branching factor of the search tree
» d — depth of the least-cost solution
» m — maximum depth of the state space

(may be o0)

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition
» Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search

Iterative deepening search

vV v. v v Y

Bidirectional search

Breadth-first search

» Expand the shallowest unexpanded node

» Implementation: frontier is a FIFO queue,
i.e., new successors go at end

Progress of breadth-first search

Breadth-first search on a simple binary tree.

At each stage, the node to be expanded next is indicated by a
marker.

The nodes that are already explored are gray.

The nodes with dashed lines are not generated yet.

Progress of breadth-first search

Breadth-first search on a simple binary tree.

At each stage, the node to be expanded next is indicated by a
marker.

The nodes that are already explored are gray.

The nodes with dashed lines are not generated yet.

(A)
> (9

Progress of breadth-first search

Breadth-first search on a simple binary tree.

At each stage, the node to be expanded next is indicated by a
marker.

The nodes that are already explored are gray.

The nodes with dashed lines are not generated yet.

(A)
(B) >(C
D &

Progress of breadth-first search

Breadth-first search on a simple binary tree.

At each stage, the node to be expanded next is indicated by a
marker.

The nodes that are already explored are gray.

The nodes with dashed lines are not generated yet.

(4)
(B) (O
>O ® O ©

Properties of breadth-first search

» Complete: Yes (if b is finite)

> Time: b+ b?> + b3+ ...+ b? + b(b? — 1) = O(b9*1),
i.e., number of nodes generated is exponential in d

> Space: O(b9*1) (keeps every node in memory)

» Optimal: Yes (if cost = 1 per step)

Space is the big problem; can easily generate nodes at 100MB/sec
so 24hrs = 8604GB.

Breadth-first search algorithm

function BREADTH-FIRST-SEARCH (problem)
returns a solution, or failure
node < a node with STATE=problem.INITIAL-STATE,
PaTH-COST = 0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier — a FIFO queue with node as the only element
explored < an empty set
loop do
if EMPTY?(frontier) then return failure
node — POP(frontier) /* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE (problem,node, action)
if child. STATE is not in explored or frontier then
if problem.GOAL-TEST (child.STATE) then
return SOLUTION(child)
frontier «— INSERT (child, frontier)

Uniform-cost search

» Expand the least-cost unexpanded node
» Implementation: frontier is a queue ordered by path cost

» Equivalent to breadth-first if step costs are all equal

Properties of uniform-cost search

» Complete: Yes, if step cost > €

» Time: # of nodes with g < cost of optimal solution,
O(bl-H_C*/ej)
where C* is the cost of the optimal solution

» Space: # of nodes with g < cost of optimal solution,
O(bl-H_C*/ej)

» Optimal: Yes—nodes expanded in increasing order of g(n)

Uniform-cost search algorithm

function UNIFORM-COST-SEARCH (problem)
returns a solution, or failure
node < a node with STATE=problem.INITIAL-STATE,
PaTH-COST = 0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier < a priority ordered by PATH-COST, with node as the only elemen
explored < an empty set
loop do
if EMPTY?(frontier) then return failure
node — POP(frontier) /* chooses the lowest-cost node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE (problem,node, action)
if child. STATE is not in explored or frontier then
frontier « INSERT (child, frontier)
else if child. STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Depth-first search

» Expand deepest unexpanded node

» Implementation: frontier is a LIFO queue,
i.e., put successors at front

Progress of depth-first search

@5 & ff:s \m
B DD DD O

5 = = £ DA

Progress of depth-first search

(4
>(2) G

/ \>’ / \?

‘ e :
CEERCEERGEIRC
[\ /\ /\ /\

GEORORCRORORGRC

Progress of depth-first search

/ N\
r g
GEERC

/\ X\' / \ _f\
@D DD DM O

Progress of depth-first search

A /\
JOJORORCRORURONE

Progress of depth-first search

Progress of depth-first search

Progress of depth-first search

Progress of depth-first search

Progress of depth-first search

Progress of depth-first search

Progress of depth-first search

Progress of depth-first search

Properties of depth-first search

v

Complete: No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path

= complete in finite spaces

Time: O(b™): terrible if m is much larger than d

but if solutions are dense, may be much faster than
breadth-first

v

v

Space: O(bm), i.e., linear space!

Optimal: No

v

Depth-limited search

» It is equivalent to depth-first search with depth limit /,
i.e., nodes at depth / have no successors

» implementation: a recursive implementation is shown on the
next page

Properties of depth-limited search

Complete: No (similar to DFS)

Time: O(b'), where [is the depth-limit

Space: O(bl), i.e., linear space (similar to DFS)
Optimal: No

vV v vy

Depth-limited search

function DEPTH-LIMITED-SEARCH (problem, limit)

returns a solution, or failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(problem.INITIAL-STATE),
problem, limit)

function RECURSIVE-DLS (node, problem, limit)
returns a solution, or failure/cutoff
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
else if /imit = 0 then return cutoff
else
cutoff-occurred? «— false
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE (problem,node, action)
result — RECURSIVE-DLS (child, problem,limit-1)
if result = cutoff then cutoff-occurred? « true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

lterative deepening search

» Do iterations of depth-limited search starting with a limit of 0.
If you fail to find a goal with a particular depth limit,
increment it and continue with the iterations.

» Terminate when a solution is found or if the depth-limited
search returns failure, meaning that no solution exists.

» Combines the linear space complexity of DFS with the
completeness property of BFS.

lterative deepening search (/ = 0)

Limit=0 @ ®

lterative deepening search (/ = 1)

lterative deepening search (/ = 2)

Limit = 2 »(@ @/@)\@ K\@
>
, m

S P

lterative deepening search (/ = 3)

Limit =3 O]

sn

e 0
x@fﬁ@
e g

?}%3

Properties of iterative deepening search

Complete: Yes

Time: db' + (d — 1)b? + ...+ b? = O(b9)
Space: O(bd)

Optimal: Yes, if step cost = 1

Can be modified to explore uniform-cost tree

vV v v Y

lterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem)
returns a solution, or failure
for depth « 0 to co do
result — DEPTH-LIMITED-SEARCH (problem, depth)
if result # cutoff then return result

Compare IDS and BFS

Numerical comparison of the number of nodes generated for
b =10 and d = b, solution at the far right leaf:

N(IDS) = 50+ 400 + 3,000 + 20,000 + 100, 000
— 123,450

N(BFS) = 10+ 100 + 1,000 -+ 10,000 + 100, 000 + 999, 990
— 1,111,100

IDS does better because other nodes at depth d are not expanded.
BFS can be modified to apply the goal test when a node is
generated (rather than expanded).

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iter.
First Cost First Limited Deep.
Complete? Yes Yes No Yes Yes
Time o(p?*Y) o(b*rLE /<y o™ o(b) o(b%)
Space o(b?*Y) O(b™*rLE /<y O(bm) O(bl) O(bd)
Optimal? Yes™ Yes™ No No Yes

Bidirectional search

» Run two simultaneous states:
one forward from the initial state
one backward from the goal state
L d d
» Motivation: b(2) + b2 is much less than b¢

» Implementation: Replace the goal check with a check to see
whether the frontiers of the searches intersect

Summary

» Problem formulation usually requires abstracting away
real-world details to define a state space that can feasibly be
explored.

» There are a variety of uninformed search strategies available.

> lterative deepening search uses only linear space and not
much more time than other uninformed algorithms.

Sources for the slides

> AIMA textbook (3™ edition)
» AIMA slides (http://aima.cs.berkeley.edu/)

	Problem-solving agents
	Problem formulation
	Basic search algorithms
	Tree search
	Graph search

	Evaluating search strategies
	Uninformed search strategies
	Breadth-first search
	Uniform-cost search
	Depth-first search
	Depth-limited search
	Iterative deepening search
	Bidirectional search

