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Looking behind the scenes: a mathematical perspective

Additional References:

Nillson, N. Artificial Intelligence: A New Synthesis,
San Francisco: Morgan Kaufmann, 1998.
(Chapter 2, Chapter 3 (3.1 - 3.2))

http://en.wikipedia.org/wiki/Sigmoid_function
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The learning problem

We are given a set, examples,
of n-dimensional vectors, X,
with components xi, i = 1 , . . . , n.

These vectors are feature vectors computed by a
perceptual processing component.

The values can be real or Boolean.

For each X in examples, we also know the appropriate
action or classification y.
These associated actions are sometimes called the labels
or the classes of the vectors.
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The learning problem (cont’d)

The set examples with the associated labels is sometimes
called the the training set.

The machine learning problem is to find a function, say,
h(X), that responds "acceptably" to the members of the
training set.

Note that this type of learning is supervised.

We would like the action computed by h to agree with the
label for as many vectors in examples as possible.
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Training a single neuron

− X . W Θ = 0

Equation of hyperplane
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Origin
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− X . W Θ < 0

on this side

adjusting the threshold θ changes the position of the
hyperplane boundary with respect to the origin

adjusting the weights changes the orientation of the
hyperplane
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Gradient descent method

Define an error function that can be minimized by
adjusting weight values.

A commonly used error function is squared error:

ε = ∑
Xi∈examples

(yi−gi)
2

where gi is the actual response for input Xi, and yi is the
desired response.

For fixed examples, we see that the error depends on the
weight values through gi.
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Gradient descent method (cont’d)

A gradient descent process is useful to find the
minimum of ε: calculate the gradient of ε in weight space
and move the weight vector along the negative gradient
(downhill).

Note that, ε as defined, depends on all the input
vectors in E.

Use one vector at a time incrementally rather than
all at once.

Note that, the incremental process is an approximation of
the “batch” process. Nevertheless, it works.
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Gradient descent method (cont’d)

The following is a hypothetical error surface in two dimensions.
Constant α dictates the size of the learning step.
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The procedure

Take one member of examples.

Adjust the weights if needed.

Repeat
(a predefined number of times or until ε is sufficiently
small.)
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How to adjust the weights

The squared error for a single output vector, X, evoking an
output of g, when the desired output is y is:

ε = (y−g)2.

The gradient of ε with respect to the weights is
∂ε/∂W = [∂ε/∂w0, . . . ,∂ε/∂wi, . . . ,∂ε/∂wn].
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How to adjust the weights (cont’d)

Since ε′s dependence on W is entirely through the dot
product, s = X . W, we can use the chain rule to write

∂ε/∂W = ∂ε/∂s×∂s/∂W

Because ∂s/∂W = X

∂ε/∂W = ∂ε/∂s×X

Note that ∂ε/∂s =−2(y−g)∂g/∂s. Thus

∂ε/∂W =−2(y−g)∂g/∂s×X
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How to adjust the weights (cont’d)

The remaining problem is to compute ∂g/∂s.

The perceptron output, g, is not continuously differentiable
with respect to s because of the presence of the threshold
function.

Most small changes in the dot product do not change g at
all, and when g does change, it changes abruptly from 1
to 0 or vice versa.

We will look at two methods to compute the differential.
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Computing the differential

Ignore the threshold function and let g = s.
(The Widrow-Hoff Procedure).

Replace the threshold function with another nonlinear
function that is differentiable.
(The Generalized Delta Procedure).
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The Widrow-Hoff procedure

Suppose we attempt to adjust the weights so that every
training vector labeled with a 1 produces a dot product of
exactly 1, and every vector labeled with a 0 produces a
dot product of exactly -1.

In that case, with g = s, ε = (y−g)2 = (y− s)2, and,
∂g/∂s = 1.

Now, the gradient is

∂ε/∂W =−2(y−g)X
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The Widrow-Hoff procedure (cont’d)

Moving the weight vector along the negative gradient,
and incorporating the factor 2, into a
learning rate parameter, α, the new value of the weight
vector is given by

W ←W +α(y−g)X

All we need to do now is to plug in this formula in the
"adjust the weights" step of the training procedure.
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The Widrow-Hoff procedure (cont’d)

We have, W ←W +α(y−g)X .

Whenever (y−g) is positive, we add a fraction of the
input vector into the weight vector. This addition makes
the dot product larger, and (y−g) smaller.

Similarly, when (y−g) is negative, we subtract a fraction
of the input vector from the weight vector.
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The Widrow-Hoff procedure (cont’d)

This procedure is also known as the Delta rule.

After finding a set of weights that minimize the squared
error (using g = s), we are free to revert to the
threshold function for g.
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The generalized delta procedure

Another way of dealing with the nondifferentiable
threshold function: replace the threshold function by an
S-shaped differentiable function called a sigmoid.

Usually, the sigmoid function used is the logistic function
which is defined as follows:

f (t) =
1

1+ e−t

where, t is the input and f is the output.
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A sigmoid function
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It is possible to get sigmoid functions of different “flatness” by
adjusting the exponent.
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Differentiating a sigmoid function

Sigmoid functions are popular in neural networks because they
are a convenient approximation to the threshold function and
they yield the following differential:

d
dt

sig(t) = sig(t)× (1− sig(t))
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The generalized Delta procedure (cont’d)

With the sigmoid function, ∂g/∂s = g(1−g)

Substitute into ∂ε/∂W =−2(y−g)∂g/∂s×X

∂ε/∂W =−2(y−g)g(1−g)×X

The new weight change rule is:

W ←W +α(y−g)g(1−g)X

This is equivalent to the weight change rule included in
the learning algorithm:

Wj←Wj +α×Err×g′(in)× x j[e]
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Fuzzy hyperplane

In generalized Delta, there is the added term g(1−g) due to
the presence of the sigmoid function.
When g = 0, g(1−g) is also 0.
When g = 1, g(1−g) is 0.
When g = 1/2, g(1−g) reaches its maximum value (1/4).
Weight changes are made where
changes have much effect on f .
For an input vector far away from the fuzzy hyperplane,
g(1−g) has value closer to 0, and the generalized
Delta rule makes little or no change to the weight
values regardless of the desired output.

. – p.21/22



Remarks

The change is in the direction that helps correct the error.
Whether it is corrected fully depends on α.

It can be proven that if there is some weight vector, W,
that produces a correct output for all the input vectors in
examples, then after a finite number of input vector
presentations, the error-correction procedure will find such
a weight vector and thus make no more weight changes.

Remember that a single perceptron can only learn linearly
separable input vectors.

The Widrow-Hoff and generalized Delta procedures can
find minimum squared error solutions even when the
minimum error is not zero.
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