CS4811 Neural Network Learning Algorithms

From: Stuart Russell and Peter Norvig Artificial Intelligence a Modern Approach Prentice Hall Series in Artificial Intelligence, 2003.

Single perceptron learning

The following is a gradient descent learning algorithm for perceptrons, assuming a differentiable activation function g. For threshold perceptrons, the factor g'(in) is omitted from the weight update. NEURAL-NET-HYPOTHESIS returns a hypothesis that computes the network output for any given example. Comments were added to the algorithm listed in Figure 20.21.

function PERCEPTRON-LEARNING(*examples, network*) **returns** a perceptron hypothesis

inputs:

examples, a set of examples, each with input $\mathbf{x} = x_1, \dots, x_n$ and output *y network*, a perceptron with weights W_j , $j = 0, \dots n$ and activation function *g*

repeat

for each *e* in examples do $in \leftarrow \sum_{j=0}^{n} W_j x_j[e]$ $err \leftarrow y[e] - g(in)$ $W_j \leftarrow W_j + c \times Err \times g'(in) \times x_j[e]$ until some stopping criterion is satisfied

return NEURAL-NET-HYPOTHESIS(*network*)

// Compute the weighted sum.
// Compute the error.
// Adjust the weights.

Note that x_1, \ldots, x_n are the real inputs and x_0 is the bias input which is always -1. We'll take g'(in) to be 1 for simplicity.

The stopping criterion can be a combination of the following:

- Convergence: The algorithms stops when every example is classified correctly.
- Number of iterations: The algorithm stops when a preset iteration limit is reached. This puts a time limit in case the network does not converge.
- Inadequate progress; The algorithm stops when the maximum weight change is less than a preset ε value. The procedure can find a minimum squared error solution even when the minimum error is not zero.

The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks. Comments were added to the algorithm in Figure 20.25.

function BACK-PROP-LEARNING(*examples, network*) **returns** a neural network

inputs:

examples, a set of examples, each with input vector **x** and output vector **y**. *network*, a multilayer network with *L* layers, weights $W_{j,i}$, activation function *g*

repeat

•

for each e in examples do for each node *j* in the input layer do // Simply copy the input values. $a_j \leftarrow x_j[e]$ for l = 2 to L do // Feed the values forward. $in_i \leftarrow \sum_j W_{j,i} a_j$ // *j* refers to the previous layer. $a_i \leftarrow g(in_i)$ // *i* refers to the current layer (*l*). for each node *i* in the output layer do // Compute the error at the output. $\Delta_i \leftarrow g'(in_i) \times (y_i[e] - a_i)$ for l = L - 1 to 1 do // Propagate the error backwards. for each node *j* in layer *l* do $\Delta_i \leftarrow g'(in_i) \sum_i W_{i,i} \Delta_i$ // "Blame" a node as much as its weight. for each node *i* in layer l + 1 do $W_{j,i} \leftarrow W_{j,i} + c \times a_j \times \Delta_i$ // Adjust the weights. until some stopping criterion is satisfied return NEURAL-NET-HYPOTHESIS(network)

For g, use the hyperbolic tangent: tanh(x). The derivative of tanh is $sech^2$, so use $sech^2(x)$ for g'.

$$tanh(x) = \frac{sinh(x)}{cosh(x)}$$
$$sech(x) = \frac{1}{sinh(x)}$$