
CS4811 Neural Network Learning Algorithms

From: Stuart Russell and Peter Norvig
Artificial Intelligence a Modern Approach
Prentice Hall Series in Artificial Intelligence, 2003.

Single perceptron learning

The following is a gradient descent learning algorithm for perceptrons, assuming a differentiable
activation functiong. For threshold perceptrons, the factorg′(in) is omitted from the weight update.
NEURAL-NET-HYPOTHESISreturns a hypothesis that computes the network output for any given
example. Comments were added to the algorithm listed in Figure 20.21.

function PERCEPTRON-LEARNING(examples, network)
returns a perceptron hypothesis

inputs:
examples,a set of examples, each with inputx = x1, . . . ,xn and outputy
network,a perceptron with weightsWj , j = 0, . . .n and activation functiong

repeat
for each e in examplesdo

in← ∑n
j=0Wj x j [e] // Compute the weighted sum.

err← y[e]−g(in) // Compute the error.
Wj ←Wj +c×Err×g′(in)×x j [e] // Adjust the weights.

until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(network)

Note thatx1, . . . ,xn are the real inputs andx0 is the bias input which is always−1. We’ll takeg′(in)
to be 1 for simplicity.

The stopping criterion can be a combination of the following:

• Convergence: The algorithms stops when every example is classified correctly.

• Number of iterations: The algorithm stops when a preset iteration limit is reached. This puts
a time limit in case the network does not converge.

• Inadequate progress; The algorithm stops when the maximum weight change is less than a
presetε value. The procedure can find a minimum squared error solution even when the
minimum error is not zero.

1



The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks. Comments
were added to the algorithm in Figure 20.25.

function BACK-PROP-LEARNING(examples, network)
returns a neural network

inputs:
examples,a set of examples, each with input vectorx and output vectory.
network,a multilayer network withL layers, weightsWj ,i, activation functiong

repeat
for each e in examplesdo

for each node j in the input layerdo // Simply copy the input values.
a j ← x j [e]

for l = 2 to L do // Feed the values forward.
ini ← ∑ j Wj ,i a j // j refers to the previous layer.
ai ← g(ini) // i refers to the current layer (l ).

for each nodei in the output layerdo // Compute the error at the output.
∆i ← g′(ini)× (yi[e]−ai)

for l = L−1 to 1 do // Propagate the error backwards.
for each node j in layer l do

∆ j ← g′(in j)∑i Wj ,i ∆i // “Blame” a node as much as its weight.
for each nodei in layer l +1 do

Wj ,i←Wj ,i +c×a j ×∆i // Adjust the weights.
until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(network)

Forg, use the hyperbolic tangent:tanh(x). The derivative oftanh is sech2, so usesech2(x) for g′.

tanh(x) =
sinh(x)
cosh(x)

sech(x) =
1

sinh(x)
.

2


