CHA811 Neural Network Learning Algorithms

From: Stuart Russell and Peter Norvig
Artificial Intelligence a Modern Approach
Prentice Hall Series in Atrtificial Intelligence, 2003.

Single perceptron learning

The following is a gradient descent learning algorithm fergeptrons, assuming a differentiable
activation functiorg. For threshold perceptrons, the faoga(in) is omitted from the weight update.
NEURAL-NET-HYPOTHESISreturns a hypothesis that computes the network output fpgaen
example. Comments were added to the algorithm listed inrigQ.21.

function PERCEPTRONL EARNING(examples, netwojk
returns a perceptron hypothesis

inputs:
examplesa set of examples, each with inpu& x4, ..., X, and outputy
network,a perceptron with weight#/j, j = 0,...n and activation functiog

repeat
for each ein exampleslo
in — 31 oW, x;[¢] /I Compute the weighted sum.
err < yle] —g(in) /l Compute the error.
W W, +cx Err x g(in) x X[/I Adjust the weights.

until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIgnetwork

Note thatxy, . .., X, are the real inputs ang is the bias input which is always1. We’'ll taked'(in)
to be 1 for simplicity.

The stopping criterion can be a combination of the following

e Convergence: The algorithms stops when every examplessitied correctly.

e Number of iterations: The algorithm stops when a presedtit@n limit is reached. This puts
a time limit in case the network does not converge.

e Inadequate progress; The algorithm stops when the maximeigihtvchange is less than a
presete value. The procedure can find a minimum squared error sol@@n when the
minimum error is not zero.

The backpropagation algorithm

The following is the backpropagation algorithm for leagnin multilayer networks. Comments
were added to the algorithm in Figure 20.25.

function BACK-PROP-LEARNING(examples, netwo)k
returns a neural network

inputs:
examplesa set of examples, each with input vectaand output vectoy.
network,a multilayer network with_ layers, weight®V; ;, activation functiorg
repeat
for each ein exampleslo

for each nodej in the input layerdo /I Simply copy the input values.
aj —Xjl¢]
for| =2toL do Il Feed the values forward.
inj — Y ;Wi a /' j refers to the previous layer.
a — g(in;) /i refers to the current layel)(
for each nodei in the output layedo /l Compute the error at the output.
A —g'(ini) < (yi[e] — &)
forI=L—1toldo // Propagate the error backwards.
for each nodej in layerl do
Aj —d(inj) TiWj;i 4 /l “Blame” a node as much as its weight.

for each nodei in layerl +1 do
Wi —Wi+cxa; x4 [/ Adjust the weights.
until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIgnetwork

For g, use the hyperbolic tangerianh(x). The derivative ofanhis secl, so usesech(x) for ¢'.

o S0
sechix) = Wﬁ‘(x)

