
1

Game Playing

Chapter 6

Additional references for the slides:

Luger’s AI book (2005).

Robert Wilensky’s CS188 slides:
www.cs.berkeley.edu/~wilensky/cs188/lectures/index.html

Tim Huang’s slides for the game of Go.

http://www.cs.berkeley.edu/~wilensky/cs188/lectures/index.html

2

Game playing

Games have always been an important
application area for heuristic algorithms. The
games that we will look at in this course will be
two-person board games such as Tic-tac-toe,
Chess, or Go.

3

Types of Games

Deterministic Chance

Perfect

information

Chess, Checkers

Go, Othello

Backgammon

Monopoly

Imperfect

Information

Battleships

Blind tictactoe

Bridge, Poker,

Scrabble,

Nuclear War

4

Tic-tac-toe state space reduced by
symmetry (2-player, deterministic, turns)

5

A variant of the game nim

• A number of tokens are placed on a table
between the two opponents

• A move consists of dividing a pile of tokens
into two nonempty piles of different sizes

• For example, 6 tokens can be divided into
piles of 5 and 1 or 4 and 2, but not 3 and 3

• The first player who can no longer make a
move loses the game

• For a reasonable number of tokens, the state
space can be exhaustively searched

6

State space for a variant of nim

7

Exhaustive minimax for the game of nim

8

Two people games

• One of the earliest AI applications

• Several programs that compete with the best
human players:

• Checkers: beat the human world champion
• Chess: beat the human world champion
• Backgammon: at the level of the top handful of humans
• Go: no competitive programs (? In 2008)
• Othello: good programs
• Hex: good programs

9

Search techniques for 2-person games

• The search tree is slightly different: It is a
two-ply tree where levels alternate between
players

• Canonically, the first level is “us” or the player
whom we want to win.

• Each final position is assigned a payoff:
• win (say, 1)
• lose (say, -1)
• draw (say, 0)

• We would like to maximize the payoff for the
first player, hence the names MAX & MINIMAX

10

The search algorithm

• The root of the tree is the current board
position, it is MAX’s turn to play

• MAX generates the tree as much as it can, and
picks the best move assuming that Min will also
choose the moves for herself.

• This is the Minimax algorithm which was
invented by Von Neumann and Morgenstern in
1944, as part of game theory.

• The same problem with other search trees: the
tree grows very quickly, exhaustive search is
usually impossible.

11

Minimax

Perfect play for deterministic, perfect
information games

Idea: choose to move to the position with the
highest mimimax value

Best achievable payoff against best play

12

Minimax applied to a hypothetical state
space (Luger Fig. 4.15)

13

Minimax algorithm

Function Minimax-Decision(state)

returns an action

inputs: state, current state in game

return the a in Actions(state) maximizing

MIN-VALUE(RESULT(a,state))

14

Max-value algorithm

Function MAX-VALUE(state)

returns a utility value

inputs: state, current state in game

if TERMINAL-TEST(state) then
return UTILITY(state)

v← -∞

for each <a, s> in SUCCESSORS(state) do
v ← MAX(v, MIN-VALUE(s))

return v

15

Min-value algorithm

Function MIN-VALUE(state)

returns a utility value

inputs: state, current state in game

if TERMINAL-TEST(state) then
return UTILITY(state)

v← ∞

for each <a, s> in SUCCESSORS(state) do
v ← MIN(v, MAX-VALUE(s))

return v

16

Properties of minimax

Complete: Yes, if the tree is finite

(chess has specific rules for this)

Optimal: Yes, against an optimal opponent

Otherwise?

Time complexity: O(bm)

Space complexity: O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games

exact solution is completely infeasible

But do we need to explore every path?

17

Using the Minimax algorithm

• MAX generates the full search tree (up to the
leaves or terminal nodes or final game
positions) and chooses the best one:

win or tie
• To choose the best move, values are
propogated upward from the leaves:

• MAX chooses the maximum
• MIN chooses the minimum

• This assumes that the full tree is not
prohibitively big
• It also assumes that the final positions are
easily identifiable
• We can make these assumptions for now, so
let’s look at an example

18

Two-ply minimax applied to X’s move
near the end of the game (Nilsson, 1971)

19

Using cut-off points
• Notice that the tree was not generated to full
depth in the previous example

• When time or space is tight, we can’t search
exhaustively so we need to implement a cut-off
point and simply not expand the tree below the
nodes who are at the cut-off level.

• But now the leaf nodes are not final positions
but we still need to evaluate them:

use heuristics

• We can use a variant of the “most wins”
heuristic

20

Heuristic measuring conflict

21

Calculation of the heuristic

• E(n) = M(n) – O(n) where
• M(n) is the total of My (MAX) possible winning lines
• O(n) is the total of Opponent’s (MIN) possible winning

lines
• E(n) is the total evaluation for state n

• Take another look at the previous example

• Also look at the next two examples which use
a cut-off level (a.k.a. search horizon) of 2 levels

22

Two-ply minimax applied to the opening
move of tic-tac-toe (Nilsson, 1971)

23

Two-ply minimax and one of two
possible second MAX moves (Nilsson, 1971)

24

Pruning the search tree

• The technique is called alpha-beta pruning

• Basic idea: if a portion of the tree is obviously
good (bad) don’t explore further to see how
terrific (awful) it is

• Remember that the values are propagated
upward. Highest value is selected at MAX’s
level, lowest value is selected at MIN’s level

• Call the values at MAX levels α values, and the
values at MIN levels β values

25

The rules

• Search can be stopped below any MIN node
having a beta value less than or equal to the
alpha value of any of its MAX ancestors

• Search can be stopped below any MAX node
having an alpha value greater than or equal to
the beta value of any of its MIN node ancestors

26

Example with MAX

MAX

MAX

MIN

3 4 5

β=3 β≤2

2

As soon as the node with
value 2 is generated, we
know that the beta value will be
less than 3, we don’t need
to generate these nodes
(and the subtree below them)

α ≥ 3

(Some of) these
still need to be
looked at

27

Example with MIN

MIN

MIN

MAX

3 4 5

α=5 α≥6

6

As soon as the node with
value 6 is generated, we
know that the alpha value will be
larger than 6, we don’t need
to generate these nodes
(and the subtree below them)

β ≤ 5

(Some of) these
still need to be
looked at

28

Alpha-beta pruning applied to the state
space of Fig. 4.15

29

Properties of α-β

Pruning does not affect final result

Good move ordering improves effectiveness of
pruning

With “perfect ordering,” doubles solvable depth

time complexity = O(b m/2)

A simple example of the value of reasoning
about which computations are relevant (a form
of metareasoning)

Unfortunately, 3550 is still impossible!

30

Number of nodes generated as a
function of branching factor B, and
solution length L (Nilsson, 1980)

31

Informal plot of cost of searching and
cost of computing heuristic evaluation
against heuristic informedness (Nilsson, 1980)

32

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about AI

• perfection is unattainable (must approximate)

• good idea to think about what to think about

• expanding the ideas to uncertain situations
(games)

• with imperfect information, optimal decisions
depend on information state, not real state

	Game playing
	Types of Games
	Tic-tac-toe state space reduced by symmetry (2-player, deterministic, turns)
	A variant of the game nim
	State space for a variant of nim
	Exhaustive minimax for the game of nim
	Two people games
	Search techniques for 2-person games
	The search algorithm
	Minimax
	Minimax applied to a hypothetical state space (Luger Fig. 4.15)
	Minimax algorithm
	Max-value algorithm
	Min-value algorithm
	Properties of minimax
	Using the Minimax algorithm
	Two-ply minimax applied to X’s move near the end of the game (Nilsson, 1971)
	Using cut-off points
	Heuristic measuring conflict
	Calculation of the heuristic
	Two-ply minimax applied to the opening move of tic-tac-toe (Nilsson, 1971)
	Two-ply minimax and one of two possible second MAX moves (Nilsson, 1971)
	Pruning the search tree
	The rules
	Example with MAX
	Example with MIN
	Alpha-beta pruning applied to the state space of Fig. 4.15
	Properties of α-β
	Number of nodes generated as a function of branching factor B, and solution length L (Nilsson, 1980)
	Informal plot of cost of searching and cost of computing heuristic evaluation against heuristic informedness (Nilsson, 1980)
	Summary

