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Game Playing

Chapter 6

Additional references for the slides:

Luger’s AI book (2005).

Robert Wilensky’s CS188 slides: 
www.cs.berkeley.edu/~wilensky/cs188/lectures/index.html

Tim Huang’s slides for the game of Go.

http://www.cs.berkeley.edu/~wilensky/cs188/lectures/index.html
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Game playing

Games have always been an important 
application area for heuristic algorithms. The 
games that we will look at in this course will be 
two-person board games such as Tic-tac-toe, 
Chess, or Go.
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Types of Games

Deterministic Chance

Perfect

information

Chess, Checkers

Go, Othello

Backgammon

Monopoly

Imperfect

Information

Battleships

Blind tictactoe

Bridge, Poker,

Scrabble,

Nuclear War
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Tic-tac-toe state space reduced by 
symmetry (2-player, deterministic, turns)
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A variant of the game nim

• A number of tokens are placed on a table 
between the two opponents

• A move consists of dividing a pile of tokens 
into two nonempty piles of different sizes

• For example, 6 tokens can be divided into 
piles of 5 and 1 or 4 and 2, but not 3 and 3

• The first player who can no longer make a 
move loses the game

• For a reasonable number of tokens, the state 
space can be exhaustively searched
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State space for a variant of nim
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Exhaustive minimax for the game of nim
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Two people games

• One of the earliest AI applications

• Several programs that compete with the best 
human players:

• Checkers: beat the human world champion
• Chess: beat the human world champion
• Backgammon: at the level of the top handful of humans
• Go: no competitive programs (? In 2008)
• Othello: good programs
• Hex: good programs
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Search techniques for 2-person games

• The search tree is slightly different: It is a 
two-ply tree where levels alternate between 
players

• Canonically, the first level is “us” or the player 
whom we want to win. 

• Each final position is assigned a payoff:
• win (say, 1)
• lose (say, -1)
• draw (say, 0)

• We would like to maximize the payoff for the 
first player, hence the names MAX & MINIMAX
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The search algorithm

• The root of the tree is the current board 
position, it is MAX’s turn to play

• MAX generates the tree as much as it can, and 
picks the best move assuming that Min will also 
choose the moves for herself.

• This is the Minimax algorithm which was 
invented by Von Neumann and Morgenstern in 
1944, as part of game theory.

• The same problem with other search trees: the 
tree grows very quickly, exhaustive search is 
usually impossible.
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Minimax

Perfect play for deterministic, perfect 
information games

Idea: choose to move to the position with the 
highest mimimax value

Best achievable payoff against best play
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Minimax applied  to a hypothetical state 
space (Luger Fig. 4.15)
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Minimax algorithm

Function Minimax-Decision(state)

returns an action

inputs: state, current state in game

return the a in Actions(state) maximizing 

MIN-VALUE(RESULT(a,state))
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Max-value algorithm

Function MAX-VALUE(state)

returns a utility value

inputs: state, current state in game

if TERMINAL-TEST(state) then
return UTILITY(state)

v← -∞

for each <a, s> in SUCCESSORS(state) do
v ← MAX(v, MIN-VALUE(s))

return v
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Min-value algorithm

Function MIN-VALUE(state)

returns a utility value

inputs: state, current state in game

if TERMINAL-TEST(state) then
return UTILITY(state)

v← ∞

for each <a, s> in SUCCESSORS(state) do
v ← MIN(v, MAX-VALUE(s))

return v



16

Properties of minimax

Complete: Yes, if the tree is finite

(chess has specific rules for this)

Optimal: Yes, against an optimal opponent

Otherwise?

Time complexity: O(bm)

Space complexity: O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games

exact solution is completely infeasible

But do we need to explore every path?
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Using the Minimax algorithm

• MAX generates the full search tree (up to the 
leaves or terminal nodes or final game 
positions) and chooses the best one:

win or tie
• To choose the best move, values are 
propogated upward from the leaves:

• MAX chooses the maximum
• MIN chooses the minimum

• This assumes that the full tree is not 
prohibitively big
• It also assumes that the final positions are 
easily identifiable
• We can make these assumptions for now, so 
let’s look at an example
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Two-ply minimax applied to X’s move 
near the end of the game (Nilsson, 1971)
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Using cut-off points
• Notice that the tree was not generated to full 
depth in the previous example

• When time or space is tight, we can’t search 
exhaustively so we need to implement a cut-off 
point and simply not expand the tree below the 
nodes who are at the cut-off level.

• But now the leaf nodes are not final positions 
but we still need to evaluate them:

use heuristics

• We can use a variant of the  “most wins” 
heuristic
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Heuristic measuring conflict
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Calculation of the heuristic

• E(n) = M(n) – O(n) where
• M(n) is the total of My (MAX) possible winning lines
• O(n) is the total of Opponent’s (MIN) possible winning 

lines
• E(n) is the total evaluation for state n

• Take another look at the previous example

• Also look at the next two examples which use 
a cut-off level (a.k.a. search horizon) of 2 levels
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Two-ply minimax applied to the opening 
move of tic-tac-toe (Nilsson, 1971)
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Two-ply minimax and one of two 
possible second MAX moves (Nilsson, 1971)
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Pruning the search tree

• The technique is called alpha-beta pruning

• Basic idea: if a portion of the tree is obviously 
good (bad) don’t explore further to see how 
terrific (awful) it is

• Remember that the values are propagated 
upward. Highest value is selected at MAX’s
level, lowest value is selected at MIN’s level

• Call the values at MAX levels α values, and the 
values at MIN levels β values
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The rules

• Search can be stopped below any MIN node 
having a beta value less than or equal to the 
alpha value of any of its MAX ancestors

• Search can be stopped below any MAX node 
having an alpha value greater than or equal to 
the beta value of any of its MIN node ancestors
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Example with MAX

MAX

MAX

MIN

3 4 5

β=3 β≤2

2

As soon as the node with
value 2 is generated, we 
know that the beta value will be 
less than 3, we don’t need
to generate these nodes 
(and the subtree below them)

α ≥ 3

(Some of) these
still need to be
looked at
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Example with MIN

MIN

MIN

MAX

3 4 5

α=5 α≥6

6

As soon as the node with
value 6 is generated, we 
know that the alpha value will be 
larger than 6, we don’t need
to generate these nodes 
(and the subtree below them)

β ≤ 5

(Some of) these
still need to be
looked at
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Alpha-beta pruning applied to the state 
space of Fig. 4.15
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Properties of α-β

Pruning does not affect final result

Good move ordering improves effectiveness of 
pruning

With “perfect ordering,” doubles solvable depth

time complexity = O(b m/2)

A simple example of the value of reasoning 
about which computations are relevant (a form 
of metareasoning)

Unfortunately, 3550 is still impossible!   
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Number of nodes generated as a 
function of branching factor B, and 
solution length L (Nilsson, 1980)
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Informal plot of cost of searching and 
cost of computing heuristic evaluation 
against heuristic informedness (Nilsson, 1980)
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Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about AI

• perfection is unattainable (must approximate)

• good idea to think about what to think about

• expanding the ideas to uncertain situations 
(games)

• with imperfect information, optimal decisions 
depend on information state, not real state
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