
Informed Search and Exploration

Chapter 4

Ch. 04 – p.1/35

Outline

Best-first search

A∗ search

Heuristics

(IDA∗ search)

Hill-climbing

Ch. 04 – p.2/35

Review: Tree search

function TREE-SEARCH (problem, fringe)
returns a solution, or failure

fringe← INSERT(MAKE-NODE(INITIAL -STATE [problem]),fringe)
loop do

if EMPTY?(fringe) then return failure
node← REMOVE-FIRST(fringe)
if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)
fringe← INSERT-ALL (EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion.
The nodes are stored in the fringe.

Ch. 04 – p.3/35

Best-first search

Idea: use an evaluation function for each node
(the evaluation function is an estimate of
“desirability”)

Expand the most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of
desirability

Special cases:
greedy search
A∗ search

Ch. 04 – p.4/35

Romania with step costs in km

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Ch. 04 – p.5/35

Greedy search

Evaluation function h(n) (heuristic) = estimate of
cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to
Bucharest

Greedy search expands the node that appears to be
closest to goal

Ch. 04 – p.6/35

Greedy search example

Arad

Ch. 04 – p.7/35

After expanding Arad

329 374

Sibiu Timisoara

Arad

Zerind

253

Ch. 04 – p.8/35

After expanding Sibiu

366 380 193

329 374

Arad Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

176

Ch. 04 – p.9/35

After expanding Fagaras

Bucharest

366 380 193

253 0

329 374

Arad

Sibiu

Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

Ch. 04 – p.10/35

Properties of greedy search

Complete No — can get stuck in loops, e.g.,
Iasi→ Neamt→ Iasi→ Neamt→
Complete in finite space with repeated-state
checking

Time O(bm), but a good heuristic can give dramatic
improvement

Space O(bm)—keeps all nodes in memory

Optimal No

Ch. 04 – p.11/35

A∗ search

Idea: avoid expanding paths that are already
expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to
goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)
E.g., hSLD(n) never overestimates the actual road
distance.

Ch. 04 – p.12/35

A∗ search example

Arad

366=0+366

Ch. 04 – p.13/35

After expanding Arad

Sibiu Timisoara

Arad

Zerind

447=118+329 449=75+374393=140+253

Ch. 04 – p.14/35

After expanding Sibiu

Arad Fagaras Oradea

Sibiu Timisoara

Arad

Zerind

646=280+366 671=291+380

447=118+329 449=75+374

415=239+176

Rimnicu V.

413=220+193

Ch. 04 – p.15/35

After expanding Rimnicu Vilcea

Arad Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

Craiova Pitesti Sibiu

646=280+366 671=291+380

526=366+160 553=300+253

447=118+329 449=75+374

417=317+100

415=239+176

Ch. 04 – p.16/35

After expanding Fagaras

Bucharest

Arad

Sibiu

Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

Craiova Pitesti Sibiu

646=280+366

591=338+253 450=450+0

671=291+380

526=366+160 553=300+253

447=118+329 449=75+374

417=317+100

Ch. 04 – p.17/35

After expanding Pitesti

Bucharest

Bucharest

Arad

Sibiu

Fagaras Oradea Rimnicu V.

Sibiu Timisoara

Arad

Zerind

Craiova Pitesti Sibiu

Rimnicu V.Craiova

646=280+366

591=338+253 450=450+0

671=291+380

526=366+160 553=300+253

418=418+0 615=455+160 607=414+193

447=118+329 449=75+374

Ch. 04 – p.18/35

Optimality of A ∗

Theorem: A∗ search is optimal

Suppose some suboptimal goal G2 has been generated
and is in the queue. Let n be an unexpanded node on a
shortest path to an optimal goal G1.

Ch. 04 – p.19/35

Proof for the optimality of A ∗

n

G1
G2

start

f(G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion

Ch. 04 – p.20/35

Properties of A∗

Complete Yes, unless there are infinitely many
nodes with f ≤ f(G)

Time Exponential in
(relative error in h × length of solution)

Space Keeps all nodes in memory

Optimal Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

Ch. 04 – p.21/35

Admissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

h1(S) = ??
h2(S) = ??

Ch. 04 – p.22/35

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:
d = 14 IDS = 3,473,941 nodes

A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Ch. 04 – p.23/35

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile
can move anywhere, then h1(n) gives the shortest
solution

If the rules are relaxed so that a tile can move to any
adjacent square, then h2(n) gives the shortest
solution

Key point: the optimal solution cost of a relaxed
problem is no greater than the optimal solution cost
of the real problem

Ch. 04 – p.24/35

Iterative Deepening A* (IDA*)

Idea: perform iterations of DFS. The cutoff is defined
based on the f -cost rather than the depth of a node.

Each iteration expands all nodes inside the contour
for the current f -cost, peeping over the contour to
find out where the contour lies.

Ch. 04 – p.25/35

Iterative Deepening A* (IDA*)

function IDA* (problem)
returns a solution sequence

inputs: problem, a problem
local variables:

f-limit, the current f -COST limit
root, a node

root← MAKE-NODE(INITIAL -STATE[problem])
f-limit← f -COST(root)
loop do

solution, f-limit← DFS-CONTOUR(root, f-limit)
if solution is non-null then return solution
if f-limit =∞ then return failure

Ch. 04 – p.26/35

Iterative Deepening A* (IDA*)

function DFS-CONTOUR (node, f-limit)
returns a solution sequence and a new f -COST limit

inputs: node, a node
f-limit, the current f -COST limit

local variables:
next-f, the f -COST limit for the next contour, initally∞

if f -COST[node] > f-limit then return null, f -COST[node]
if GOAL-TEST[problem](STATE[node]) then return node, f-limit
for each node s in SUCCESSORS(node) do

solution, new-f← DFS-CONTOUR(s, f-limit)
if solution is non-null then return solution, f-limit
next-f← M IN(next-f, new-f)

return null, next-f

Ch. 04 – p.27/35

Iterative improvement algorithms

In many optimization problems, the path is
irrelevant; the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP or, find
configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement
algorithms; keep a single “current” state, try to
improve it

Constant space, suitable for online as well as offline
search

Ch. 04 – p.28/35

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise
exchanges.

B C

D

A E

A C B D E

B C

D

A E

A B C D E

Variants of this approach get within 1% of optimal very
quickly with thousands of cities.

Ch. 04 – p.29/35

Example: n-queens

Put n queens on an n× n board with no two queens on
the same row, column, or diagonal

Move a queen to reduce number of conflicts

Almost always solves n-queens almost instantenously for
very large n, e.g., n = 1 million.

Ch. 04 – p.30/35

Hill-climbing (or gradient ascent/descent)

function HILL -CLIMBING (problem)
returns a state that is a local maximum

inputs: problem, a problem
local variables:

current, a node
neighbor, a node

current← MAKE-NODE(INITIAL -STATE[problem])
loop do

neighbor← a highest-valued successor of current
if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
current← neighbor

Ch. 04 – p.31/35

Hill-climbing (cont’d)

“Like climbing Everest in thick fog with amnesia”

Problem: depending on initial state, can get stuck on
local maxima

objective
function global maximum

local maximum

"flat" local maximum

shoulder

state space
current state

Ch. 04 – p.32/35

Local Search Algorithms

Hill Climbing
stochastic: choose randomly from uphill moves
first-choice: generate successors randomly
one-by-one until one better than the current
state is found
random-restart: restart with a randomly
generated initial state
In continuous spaces, problems w/ choosing
step size, slow convergence

Simulated annealing : escape local maxima by
allowing some “bad” moves (with predefined
probabilities)
but gradually decrease their size and frequency

Ch. 04 – p.33/35

Local Search Algorithms (cont’d)

Local beam search : keeps k states rather than 1;
choose top k of their successors

not the same as k searches run in parallel
searches that find good states recruit other
searches to join them
often, all k states end up on the same local hill
idea: choose k successors randomly, biased
towards good ones

Genetic algoritms: keeps a population and
generates children from two parents

fitness function
cross-over, mutation

Ch. 04 – p.34/35

Summary

Heuristic search algorithms

Local search algorithms

Can think about speed of the search in addition to:
time & space complexity, optimality, completeness

Ch. 04 – p.35/35

	Outline
	Review: Tree search
	Best-first search
	Romania with step costs in km
	Greedy search
	Greedy search example
	After expanding Arad
	After expanding Sibiu
	After expanding Fagaras
	Properties of greedy search
	A* search
	A* search example
	After expanding Arad
	After expanding Sibiu
	After expanding Rimnicu Vilcea
	After expanding Fagaras
	After expanding Pitesti
	Optimality of A*
	Proof for the optimality of A*
	Properties of A*
	Admissible heuristics
	Dominance
	Relaxed problems
	Iterative Deepening A* (IDA*)
	Iterative Deepening A* (IDA*)
	Iterative Deepening A* (IDA*)
	Iterative improvement algorithms
	Example: Travelling Salesperson Problem
	Example: n-queens
	Hill-climbing (or gradient ascent/descent)
	Hill-climbing (cont'd)
	Local Search Algorithms
	Local Search Algorithms (cont'd)
	Summary

