I McCulloch—Pitts “unit” |

Output is a “squashed” linear function of the inputs:

a; — g(ing) = g (X;W;,a,)
NEURAL NETWORKS _ Bias Weight ]
2= 71N W, a=g(in)

ayw"\~ Zin. ¢
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A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

I Outline | I Activation functions |
& Brains g(iny) g(in;)
<& Neural networks
{ Perceptrons +1 +1
{ Multilayer perceptrons
{ Applications of neural networks
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(a) is a step function or threshold function
(b) is a sigmoid function 1/(1 +e")

Changing the bias weight 11, ; moves the threshold location
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I Brains | I Implementing logical functions [
10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time Wo=15 Wo= 05
Signals are noisy “spike trains” of electrical potential
w1}~ W1}~
/ /
Axonal arborization W, =1 W, =1
AND OR NOT

Axon from another cell

Synapse McCulloch and Pitts: every Boolean function can be implemented
Dendrite

Synapses

Cell body or Soma
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I Network structures |

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (W, ; = ;)
g(x)=sign(z), a;= £ 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.
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I Feed-forward example [
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Feed-forward network = a parameterized family of nonlinear functions:

as = g(Was- a3+ Wys - as)
= (](H’;}_g . (](I’I”v]_g cay + Woy 3" (lQ) + W:\‘; . '(/(/1'1"71‘4 say + ['Vg_; . az))

Adjusting weights changes the function: do learning this way!
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I Single-layer perceptrons |

Perceptron output
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Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff
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I Expressiveness of perceptrons [

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

YWz, >0 or W-x>0
X X
1 ) 1 (@)
?
0 0
0 1 % 0 1 X
(a) xg and X (b) %1 or X, (€) Xq xor Xp

Minsky & Papert (1969) pricked the neural network balloon
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I Perceptron learning [

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output ¥ is
E=1Bm=Ly - hw)y
D) T —2!/ "W (X)
Perform optimization search by gradient descent:
oE oErr 0
= Brrx = Err x — g Wiz
ow, T ew, T aw (= 90~ oWjz5))
= —Frr x ¢'(in) x x;
Simple weight update rule:
W; — W;+ax Errxd'(in) x x;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs
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I Perceptron learning contd. [

Perceptron learning rule converges to a consistent function
for any linearly separable data set

/ Perceptron
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Training set size - MAJORITY on 11 inputs Training set size - RESTAURANT data

Perceptron ——

Proportion correct on test set
MU o N © o e
Proportion correct on test set
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Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it
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[ Multilayer perceptrons [

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Output units 3
W;

Hidden units EY
Wj

Input units ER
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[ Expressiveness of MLPs [

All continuous functions w/ 2 layers, all functions w/ 3 layers

%) 6, %)
: gy
s s i

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (cf DTL proof)
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[ Back-propagation learning [

Output layer: same as for single-layer perceptron,
Wiie—=Wji+axa; x A;

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
A; = g'(in;) > WA .

Update rule for weights in hidden layer:
Wij— Wij+axa, xAj.

(Most neuroscientists deny that back-propagation occurs in the brain)
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[ Back-propagation derivation [

The squared error on a single example is defined as

1

E=_
2

Z(yl - ”’/)2

where the sum is over the nodes in the output layer.

oF ( ) Oa; ( >(‘)g](in,)
= —\Yi —Qj) 5 = —Yi — Q)5

aw;, R TP oW,
= 7(?// - al),(]/(yin/)i;?:;/ = 7(1// - al),q/“n/)r?;u (z/: H”i/./a‘/)
= —(i— ”f/)!//((/”/)”,/ = 7(1’/A1

[ Back-propagation derivation contd. [

oF 5 ) da,; 5 )og(m/)
= Sy — )= = —2(y; — a;)—=—
oW, A T AP i oWy,
. ding d .
=~ - a;)g'(in;) oW, XA oW, (? ”’././a/)
da dglin;)
= =AW = =AW
; 'l’ 01’1”'/,_]' ; ) (3””/,4
. ., 0in
= -z A,Uf’_,_z,(//(Mlv/)mﬂ{/
B TV Ly s
— % AW;ig (/rl,)m (}L H/L._/a;,)

== AW,id' (inj)a, = —ard;
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[ Back-propagation learning contd. [

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

[
o N &

Total error on training set

o N A O
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Number of epochs

Typical problems: slow convergence, local minima
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I Back-propagation learning contd. [

Learning curve for MLP with 4 hidden units:
1
0.9

n test set

© 0.8

ect

£ 0.7

or|

[of

c 0.6 Decision tree

rtio

8 0.5

rop

Q04
0 10 20 30 40 50 60 70 80 90 100

Training set size - RESTAURANT data

MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily
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I Handwritten digit recognition [

O\ /| HIM|s5|6|7|8
2011017214716 7(9

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

i

Current best (kernel machines, vision algorithms) ~ 0.6% error
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I Summary [

Most brains have lots of neurons; each neuron ~ linear—threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged
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