1. (10+10 points) Consider the following grammar G:

 $S \to a \mid aA \mid BC$
 $A \to aB \mid b$
 $B \to Aa$
 $C \to cCD$
 $D \to ddd$

(a) Construct the TERM set for G.

(b) Use the TERM set to construct an equivalent grammar G_T that does not contain variables that do not generate strings of terminals.

2. (10+10 points) Consider the following grammar G where Σ contains every word listed in the rules: $\Sigma = \{\text{Michigan, Tech, ..., cool}\}$.

 $S \to \text{Michigan Tech CS gives} N \mid \text{Having a graduate degree is} R$
 $T \to \text{Being in a computing field is} D$
 $N \to \text{BSc degrees} \mid \text{MSc degrees} \mid \text{PhD degrees}$
 $R \to \text{fun} \mid \text{intellectually challenging} \mid \text{financially rewarding} \mid \text{not as hard as one would think} \mid \text{a worthwhile option to explore}$
 $D \to \text{fun} \mid \text{awesome} \mid \text{cool}$

(a) Construct the REACH set for G.

(b) Use the REACH set to construct an equivalent grammar G_U that does not contain unreachable variables.

3. (20 points) Convert the following grammar G into Chomsky normal form. Show your steps clearly. Note that G already satisfies the conditions on the start symbol S, λ-rules, useless symbols, and chain rules.

 $S \to bT$
 $T \to aAA \mid AbAT$
 $A \to aT \mid bT \mid a$

4. (40 points) Remove left recursion from the following grammar using the method described in class.

 $S \to A \mid B$
 $A \to AAA \mid a \mid B$
 $B \to BBB \mid b$