1. (5+5+5+10 points) Let L be the language over $\Sigma = \{a, b, d, e\}$ generated by the following recursive definition:

basis: $d \in L$, $e \in L$

recursive step: If ($w \in L$ and w contains d) then aaw is in L and wab is in L. If ($w \in L$ and w contains e) then $aawab$ is in L.

closure: A string $w \in L$ only if it can be obtained from the basis set by a finite number of applications of the recursive step.

(a) Give the sets L_1, L_2, and L_3 generated by the recursive definition. Note that $L_0 = \{d, e\}$.

(b) For each of the following five strings, tell whether the string is in L and indicate the reason.

λ, aad, aae, ada, $aaeab$, $abeaa$

(c) Give an implicit definition of the set of strings defined by the recursive definition. An implicit definition describes the pattern of the strings in a set by using a vertical bar to denote “such that”. For example: $\{x | x \in \Sigma^*, x = a^i b^i, and i is even \}$.

(d) Use induction to prove that all the strings in L have an odd length.

You must present the proof based on the recursive definition and on the number of applications of the recursive step. Clearly label the **basis**, **inductive hypothesis**, and **inductive step**.

2. (30 points) Let L over $\Sigma = \{1, 2, 3, a, b, c, -\}$ be the language of names where every name has to begin with a letter ($a, b, or c$).

(a) Give a recursive definition for L.

(b) Give a regular set for L.

3. (45 points) Give a regular set for the following languages.

(a) The set of strings over $\{1, 2, a, b, c\}$ that start with “a” and end with “1”. Strings can have a length of one or greater.

(b) The set of strings over $\{1, 2, a, b, c\}$ that start and end with a number. Strings can have a length of one or greater.

(c) The set of strings over $\{a, b, c\}$ in which all the a’s precede the b’s, which in turn precede the c’s. It is possible that there are no a’s, or b’s, or c’s or the string is empty.