1. (20 points) Use the procedure described in class to construct the machine M_3 that corresponds to the “product” of machines M_1 and M_2. In other words, $L(M_3) = L(M_1) \cap L(M_2)$.

M_1 accepts the strings that do not contain ‘aa’.

M_2 accepts the strings that end with ‘ab’.

Test all three machines with the four strings aa, ab, aba, aab and state whether they are accepted.

2. (10 points) Use M_1 in the previous question to construct machine M_4 where the language of M_4 is all the strings that contain ‘aa’. Construct a machine M_5 which is the product of machines M_1 and M_4. Explain that $L(M_5) = \emptyset$.

3. (20 points) Use Theorem 5.5.3 and Example 6.1.1 to convert the regular expression $(a \cup b)^*bb(a \cup b)^*$ into an NFA-λ.

Apply the full steps for converting a regular expression to an NFA-λ. Do not simplify the machine by removing λ transitions or making other changes. Do not construct the machine “directly”. For your convenience, it is acceptable to label machines corresponding to segments of the regular expression and use them in subsequent drawings (see class examples for this).

Please turn the page over for additional questions.
4. (25 points) Let M_1 be the following NFA:

![NFA Diagram 1]

(a) Give the transition function t for M_1 in tabular form.

(b) Use algorithm 5.6.3 to construct a state diagram of a DFA that is equivalent to M_1. Give the transition function and draw the state diagram of the equivalent DFA.

5. (25 points) Let M_2 be the following NFA-λ:

![NFA Diagram 2]

(a) Give the transition function t for M_2 in tabular form. Include a column for the λ-closure of each state.

(b) Use algorithm 5.6.3 to construct a state diagram of a DFA that is equivalent to M_2. Give the transition function and draw the state diagram of the equivalent DFA.