1. (10+ 10+ 10 points) Consider the following grammar G over $\Sigma = \{a, b\}$.

 $S \rightarrow AB | aB$
 $A \rightarrow aB | BS$
 $B \rightarrow bB | b | \lambda$

 (a) Transform the grammar into G_1 so that the recursion to the start symbol is removed.

 (b) Show the set of nullable variables in the new grammar G_1.

 (c) Construct an essentially noncontracting grammar G_L (with a non-recursive start symbol) equivalent to G_1.

2. (10+10 points) Consider the following grammar G. Note that the grammar does not contain λ-rules except at S.

 $S \rightarrow aSb | DEF | D | \lambda$
 $D \rightarrow E | EF | abEF$
 $E \rightarrow eEF | a | F$
 $F \rightarrow fF | a$

 (a) Use algorithm 4.3.1 to construct the CHAIN sets for the variables in V.

 (b) Construct an equivalent grammar G_c that does not contain chain rules.

3. (10+10 points) Consider the following grammar G:

 $S \rightarrow a | aA | BC$
 $A \rightarrow aB | b$
 $B \rightarrow Aa$
 $C \rightarrow cCD$
 $D \rightarrow ddd$

 (a) Construct the TERM set for G.

 (b) Use the TERM set to construct an equivalent grammar G_T that does not contain variables that do not generate strings of terminals.

 Please turn the page over for additional questions.
4. (10+10 points) Consider the following grammar G with $\Sigma = \{ \text{Robots, Humans, have, batteries, computers, artificial intelligence, food, brains, natural intelligence, Working, with, computers, is, fun, awesome, cool} \}$.

$$
S \rightarrow \text{Robots have } N \mid \text{Humans have } R \\
T \rightarrow \text{Working with computers is } D \\
N \rightarrow \text{batteries } \mid \text{computers } \mid \text{artificial intelligence} \\
R \rightarrow \text{food } \mid \text{brains } \mid \text{natural intelligence} \\
D \rightarrow \text{fun } \mid \text{awesome } \mid \text{cool}
$$

(a) Construct the REACH set for G.

(b) Use the REACH set to construct an equivalent grammar G_U that does not contain unreachable variables.

5. (10 points) Convert the following grammar G into Chomsky normal form. Show your steps clearly. Note that G already satisfies the conditions on the start symbol S, λ-rules, useless symbols, and chain rules.

$$
S \rightarrow bT \\
T \rightarrow aAA \mid AbAT \\
A \rightarrow aT \mid bT \mid a
$$