The answers must be the original work of the author. While discussion with others is permitted and encouraged, the final work should be done individually. You are not allowed to work in groups. You are allowed to build on the material supplied in the class. Any other source must be specified clearly.

1. (20 points) Let L be the language over $\{a, b\}$ generated by the following recursive definition
basis: $\lambda \in L$
recursive step: If $w \in L$ then $w a b$ is in L.
closure: A string $w \in L$ only if it can be obtained from the basis set by a finite number of applications of the recursive step.

Part a. Give the sets L_{1}, L_{2}, and L_{3} generated by the recursive definition. Note that $L_{0}=\{\lambda\}$.
Part b. Give an implicit definition of the set of strings defined by the recursive definition. An implicit definition describes the pattern of the strings in a set by using a vertical bar to denote "such that". For example: $\left\{x \mid x \in \Sigma^{*}\right.$ and x has an even number of a 's $\}$
2. (25 points) Consider a set W defined by the following recursive definition:
basis: $W=\{d\}$
recursive step: If $w \in W$ then $w a b$ is in W and $b c w$ is in W.
closure: A string $w \in W$ only if it can be obtained from the basis set by a finite number of applications of the recursive step.

Part a. Give the sets L_{0} and L_{1} generated by the recursive definition.
Part b. Give the set L_{2} generated by the recursive definition.
Part c. Is $b c d a b \in W$? Why?
Part d. Is bcbcbcdababab $\in W$? Why?
Part e. Is ababababdbce W? Why?
3. (25 points) Use induction to prove that all the strings in W above have an odd length.
4. (30 points) Give recursive definitions for the following languages:

Part a. N_{S} : The set of strings representing the natural numbers.
Part b. $M=\left\{a^{i} b^{j} \mid i>j \geq 0\right\}$

