CS3311 Lecture Notes: Chapter 19 LL(k) Grammars Nilufer Onder

Definition 19.1.1 Let $G = (V, \Sigma, P, S)$ be a CFG and $A \in V$. i. The lookahead set of the variable A, LA(A), is defined by

 $LA(A) = \{ x \mid S \stackrel{*}{\Rightarrow} uAv \stackrel{*}{\Rightarrow} ux \in \Sigma^* \}$

ii. For each rule $A \to w$ in P, the lookahead set of the rule $A \to w$ is defined by

 $LA(A \to w) = \{x \mid wv \stackrel{*}{\Rightarrow} x \text{ where } x \in \Sigma^* \text{ and } S \stackrel{*}{\Rightarrow} uAv\}$

LA(A): all terminal strings derivable from strings Av, where uAv is a left sentential form of the grammar.

 $LA(A \to w)$: is the subset of LA(A) in which the subderivations $Av \stackrel{*}{\Rightarrow} x$ are initiated with the rule $A \to w$.

Definition 19.1.2 Let $G = (V, \Sigma, P, S)$ be a CFG and let k be a natural number greater than zero. i. trunc_k is a function from $P(\Sigma^*)$ to $P(\Sigma^*)$:

 $\operatorname{trunc}_k(X) = \{ u \mid u \in X \text{ with } \operatorname{length}(u) \le k \text{ or } uv \in X \text{ with } \operatorname{length}(u) = k \}$

ii. The length-k lookahead set of the variable A:

$$LA_k(A) = \operatorname{trunc}_k(LA(A))$$

iii. The length-k lookahead set of the rule $A \rightarrow w$:

$$LA_k(A \to w) = \operatorname{trunc}_k(LA(A \to w))$$

The lookahead sets are computed from FIRST and FOLLOW sets.

Definition 19.2.1 Let $G = (V, \Sigma, P, S)$ be a CFG. For every string $u \in (V \cup \Sigma)^*$ and k > 0, the set FIRST_k(u) is defined by:

 $FIRST_k(u) = trunc_k(\{x \mid u \stackrel{*}{\Rightarrow} x, x \in \Sigma^*\}).$

Algorithm 19.4.1 Construction of FIRST_k sets

input: context-free grammar $G = (V, \Sigma, P, S)$ private: F' : the FIRST set from the previous iteration F : the FIRST set

- 1. for each $a \in \Sigma$ do F'(a) := $\{a\}$
- 2. for each $A \in V$ do if $A \to \lambda$ is a rule in P then $F(A) := \{\lambda\}$ else $F(A) := \emptyset$
- 3. repeat
 - 3.1 for each $A \in V$ do F'(A) := F(A)3.2 for each rule $A \to u_1 u_2 \dots u_n$ with n > 0 do $F(A) := F(A) \cup trunc_k(F'(u_1)F'(u_2)\dots F'(u_n))$ until F(A) = F'(A) for all $A \in V$
- 4. FIRST_k(A) := F(A)

return the FIRST sets

Example 19.4.1

 $\begin{array}{l} S \rightarrow A \# \# \\ A \rightarrow a A d \mid B C \\ B \rightarrow b B c \mid \lambda \\ C \rightarrow a c C \mid a d \end{array}$

Construct the FIRST₁ sets. The first step is the initialization:

 $\begin{array}{ll} F'(a) = \{a\} & F'(b) = \{b\} & F'(c) = \{c\} & F'(d) = \{d\} & F'(\#) = \{\#\} \\ F(S) = \emptyset & F(A) = \emptyset & F(B) = \{\lambda\} & F(C) = \emptyset \end{array}$

iteration 1:

rule $S \to A \# \#$ $F(S) = F(S) \cup \operatorname{trunc}_1(F'(A)F'(\#)F'(\#)) = \emptyset \cup \operatorname{trunc}_1(\emptyset\{\#\}\{\#\}) = \emptyset$ rule $A \to aAd$ $F(A) = F(A) \cup \operatorname{trunc}_1(F'(a)F'(A)F'(d)) = \emptyset \cup \operatorname{trunc}_1(\{a\}\emptyset\{d\}) = \emptyset$ rule $A \to BC$ $F(A) = F(A) \cup \operatorname{trunc}_1(F'(B)F'(C)) = \emptyset \cup \operatorname{trunc}_1(\{\lambda\}\emptyset) = \emptyset$ rule $B \to bBc$ $F(B) = F(B) \mapsto \operatorname{trunc}_1(F'(B)F'(B)F'(C)) = (\lambda) \mapsto \operatorname{trunc}_1(\{\lambda\}\emptyset) = \emptyset$

 $F(B) = F(B) \cup \operatorname{trunc}_1(F'(b)F'(B)F'(c)) = \{\lambda\} \cup \operatorname{trunc}_1(\{b\}\{\lambda\}\{c\}) = \{\lambda, b\}$ rule $C \to acC$

 $F(C) = F(C) \cup \operatorname{trunc}_1(F'(a)F'(c)F'(C)) = \emptyset \cup \operatorname{trunc}_1(\{a\}\{c\}\emptyset) = \emptyset$ rule $C \to ad$

$$F(C) = F(C) \cup \operatorname{trunc}_1(F'(a)F'(d)) = \emptyset \cup \operatorname{trunc}_1(\{a\}\{d\}) = \{a\}$$

iteration 2:

rule $S \to A \# \#$

 $F(S) = F(S) \cup \operatorname{trunc}_1(F'(A)F'(\#)F'(\#)) = \emptyset \cup \operatorname{trunc}_1(\emptyset\{\#\}\{\#\}) = \emptyset$ rule $A \to aAd$

 $F(A) = F(A) \cup \operatorname{trunc}_1(F'(a)F'(A)F'(d)) = \emptyset \cup \operatorname{trunc}_1(\{a\}\emptyset\{d\}) = \emptyset$ rule $A \to BC$

 $F(A) = F(A) \cup \operatorname{trunc}_1(F'(B)F'(C)) = \emptyset \cup \operatorname{trunc}_1(\{\lambda, b\}\{a\}) = \{a, b\}$ rule $B \to bBc$

 $F(B) = F(B) \cup \operatorname{trunc}_1(F'(b)F'(B)F'(c)) = \{\lambda, b\} \cup \operatorname{trunc}_1(\{b\}\{\lambda, b\}\{c\}) = \{\lambda, b\} \text{ (still)}$ rule $C \to acC$

 $F(C) = F(C) \cup \operatorname{trunc}_1(F'(a)F'(C)) = \{a\} \cup \operatorname{trunc}_1(\{a\}\{c\}\{a\}) = \{a\} \text{ (still)}$ rule $C \to ad$

 $F(C) = F(C) \cup \operatorname{trunc}_1(F'(a)F'(d)) = \{a\} \cup \operatorname{trunc}_1(\{a\}\{d\}) = \{a\} \text{ (still)}$

iteration 3:

rule $S \to A \# \#$ $F(S) = F(S) \cup \operatorname{trunc}_1(F'(A)F'(\#)F'(\#)) = \emptyset \cup \operatorname{trunc}_1(\{a, b\}\{\#\}\{\#\}) = \{a, b\}$ rule $A \rightarrow aAd$ $F(A) = F(A) \cup \operatorname{trunc}_1(F'(a)F'(A)F'(d)) = \{a, b\} \cup \operatorname{trunc}_1(\{a\}\{a, b\}\{d\}) = \{a, b\}$ rule $A \rightarrow BC$ $F(A) = F(A) \cup \operatorname{trunc}_1(F'(B)F'(C)) = \{a, b\} \cup \operatorname{trunc}_1(\{\lambda, b\}\{a\}) = \{a, b\}$ rule $B \rightarrow bBc$ $F(B) = F(B) \cup \operatorname{trunc}_1(F'(b)F'(B)F'(c)) = \{\lambda, b\} \cup \operatorname{trunc}_1(\{b\}\{\lambda, b\}\{c\}) = \{\lambda, b\} \text{ (still)}$ rule $C \to acC$ $F(C) = F(C) \cup \operatorname{trunc}_1(F'(a)F'(c)F'(C)) = \{a\} \cup \operatorname{trunc}_1(\{a\}\{c\}\{a\}) = \{a\} \text{ (still)}$ rule $C \rightarrow ad$ $F(C) = F(C) \cup \operatorname{trunc}_1(F'(a)F'(d)) = \{a\} \cup \operatorname{trunc}_1(\{a\}\{d\}) = \{a\} \text{ (still)}$ $FIRST_1(S) = \{a, b\}$ $\mathbf{FIRST}_1(A) = \{a, b\}$ $FIRST_1(B) = \{\lambda, b\}$ $FIRST_1(C) = \{a\}$

We will not be able to distinguish between the C rules with one step lookahead because they both start with a.

Construct the FIRST₂ sets. The first step is the initialization:

 $F'(a) = \{a\} \qquad F'(b) = \{b\} \qquad F'(c) = \{c\} \qquad F'(d) = \{d\} \qquad F'(\#) = \{\#\}$ $F(S) = \emptyset$ $F(A) = \emptyset$ $F(B) = \{\lambda\}$ $F(C) = \emptyset$ iteration 1:

rule $S \to A \# \#$

 $F(S) = F(S) \cup \operatorname{trunc}_2(F'(A)F'(\#)F'(\#)) = \emptyset \cup \operatorname{trunc}_2(\emptyset\{\#\}\{\#\}) = \emptyset$ rule $A \rightarrow aAd$

 $F(A) = F(A) \cup \operatorname{trunc}_2(F'(a)F'(A)F'(d)) = \emptyset \cup \operatorname{trunc}_2(\{a\}\emptyset\{d\}) = \emptyset$ rule $A \rightarrow BC$

 $F(A) = F(A) \cup \operatorname{trunc}_2(F'(B)F'(C)) = \emptyset \cup \operatorname{trunc}_2(\{\lambda\}\emptyset) = \emptyset$ rule $B \rightarrow bBc$

 $F(B) = F(B) \cup \operatorname{trunc}_2(F'(b)F'(B)F'(c)) = \{\lambda\} \cup \operatorname{trunc}_2(\{b\lambda c\}) = \{\lambda, bc\}$ rule $C \rightarrow acC$

 $F(C) = F(C) \cup \operatorname{trunc}_2(F'(a)F'(c)F'(C)) = \emptyset \cup \operatorname{trunc}_2(\{a\}\{c\}\emptyset) = \emptyset$ rule $C \rightarrow ad$

 $F(C) = F(C) \cup \operatorname{trunc}_2(F'(a)F'(d)) = \emptyset \cup \operatorname{trunc}_2(\{a\}\{d\}) = \{ad\}$

iteration 2:

rule $S \rightarrow A \# \#$ $F(S) = F(S) \cup \operatorname{trunc}_2(F'(A)F'(\#)F'(\#)) = \emptyset \cup \operatorname{trunc}_2(\emptyset\{\#\}\{\#\}) = \emptyset$ rule $A \rightarrow aAd$ $F(A) = F(A) \cup \operatorname{trunc}_2(F'(a)F'(d)) = \emptyset \cup \operatorname{trunc}_2(\{a\}\emptyset\{d\}) = \emptyset$ rule $A \rightarrow BC$ $F(A) = F(A) \cup \operatorname{trunc}_2(F'(B)F'(C)) = \emptyset \cup \operatorname{trunc}_2(\{\lambda, bc\}\{ad\}) = \{ad, bc\}$ rule $B \rightarrow bBc$ $F(B) = F(B) \cup \operatorname{trunc}_2(F'(b)F'(B)F'(c)) = \{\lambda, bc\} \cup \operatorname{trunc}_2(\{b\}\{\lambda, bc\}\{c\}) = \{\lambda, bc, bb\}$ rule $C \rightarrow acC$ $F(C) = F(C) \cup \operatorname{trunc}_2(F'(a)F'(c)F'(C)) = \{ad\} \cup \operatorname{trunc}_2(\{a\}\{c\}\{ad\}) = \{ad, ac\}$ rule $C \rightarrow ad$ $F(C) = F(C) \cup \operatorname{trunc}_2(F'(a)F'(d)) = \{ad, ac\} \cup \operatorname{trunc}_2(\{a\}\{d\}) = \{ad\}$ (RHS is only terminals) **iteration 3:** rule $S \rightarrow A \# \#$

 $F(S) = F(S) \cup \operatorname{trunc}_2(F'(A)F'(\#)F'(\#)) = \emptyset \cup \operatorname{trunc}_2(\{ad, bc\}\{\#\}\{\#\}) = \{ad, bc\}$ rule $A \to aAd$

 $F(A) = F(A) \cup \operatorname{trunc}_2(F'(a)F'(A)F'(d)) = \{ad, bc\} \cup \operatorname{trunc}_2(\{a\}\{ad, bc\}\{d\}) = \{ad, bc, aa, ab\}$ rule $A \to BC$

 $F(A) = F(A) \cup \operatorname{trunc}_2(F'(B)F'(C)) = \{ad, bc, aa, ab\} \cup \operatorname{trunc}_2(\{\lambda, b\}\{a\}) = \{ad, bc, aa, ab, bb, ac\}$ rule $B \to bBc$

 $F(B) = F(B) \cup \operatorname{trunc}_2(F'(b)F'(B)F'(c)) = \{\lambda, bc, bb\} \cup \operatorname{trunc}_2(\{b\}\{\lambda, bc, bb\}\{c\}) = \{\lambda, bc, bb\}$ (still)

rule $C \to acC$

 $F(C) = F(C) \cup \operatorname{trunc}_2(F'(a)F'(C)) = \{ad, ac\} \cup \operatorname{trunc}_2(\{a\}\{c\}\{ad, ac\}) = \{ad, ac\}$ (still)

 $\mathbf{rule}\; C \to ad$

$$F(C) = F(C) \cup \operatorname{trunc}_2(F'(a)F'(d)) = \{ad, ac\} \cup \operatorname{trunc}_2(\{a\}\{d\}) = \{ad, ac\} \text{ (still)}$$

iteration 4:

rule $S \to A \# \#$ $F(S) = F(S) \cup \operatorname{trunc}_2(F'(A)F'(\#)F'(\#)) = \emptyset \cup \operatorname{trunc}_2(\{ad, bc, aa, ab, bb, ac\}\{\#\}\{\#\}) = \emptyset$ $\{ad, bc, aa, ab, bb, ac\}$ others don't change: rule $A \rightarrow aAd$ $F(A) = F(A) \cup \operatorname{trunc}_2(F'(a)F'(A)F'(d)) =$ $\{ad, bc, aa, ab, bb, ac\} \cup trunc_2(\{a\} \{ad, bc, aa, ab, bb, ac\} \{d\}) = \{ad, bc, aa, ab, bb, ac\}$ rule $A \rightarrow BC$ $F(A) = F(A) \cup \operatorname{trunc}_2(F'(B)F'(C)) =$ $\{ad, bc, aa, ab, bb, ac\} \cup \operatorname{trunc}_2(\{\lambda, b\}\{a\}) = \{ad, bc, aa, ab, bb, ac\}$ rule $B \rightarrow bBc$ $F(B) = F(B) \cup \operatorname{trunc}_2(F'(b)F'(B)F'(c)) = \{\lambda, bc, bb\} \cup \operatorname{trunc}_2(\{b\}\{\lambda, bc, bb\}\{c\}) = \{\lambda, bc, bb\}$ rule $C \to acC$ $F(C) = F(C) \cup \operatorname{trunc}_2(F'(a)F'(c)F'(C)) = \{ad, ac\} \cup \operatorname{trunc}_2(\{a\}\{c\}\{ad, ac\}) = \{ad, ac\}$ rule $C \rightarrow ad$ $F(C) = F(C) \cup \operatorname{trunc}_2(F'(a)F'(d)) = \{ad, ac\} \cup \operatorname{trunc}_2(\{a\}\{d\}) = \{ad, ac\}$ $FIRST_2(S) = \{ad, bc, aa, ab, bb, ac\}$ $FIRST_2(A) = \{ad, bc, aa, ab, bb, ac\}$ $\operatorname{FIRST}_2(B) = \{\lambda, bc, bb\}$ $FIRST_2(C) = \{ad, ac\}$