CS3311 Lecture Notes: Chapter 19 LL(k) Grammars Nilufer Onder

Definition 19.1.1 Let $G=(V, \Sigma, P, S)$ be a CFG and $A \in V$.
i. The lookahead set of the variable $\mathbf{A}, \mathrm{LA}(\mathbf{A})$, is defined by

$$
L A(A)=\left\{x \mid S \stackrel{*}{\Rightarrow} u A v \stackrel{*}{\Rightarrow} u x \in \Sigma^{*}\right\}
$$

ii. For each rule $A \rightarrow w$ in P, the lookahead set of the rule $A \rightarrow w$ is defined by

$$
L A(A \rightarrow w)=\left\{x \mid w v \stackrel{*}{\Rightarrow} x \text { where } x \in \Sigma^{*} \text { and } S \stackrel{*}{\Rightarrow} u A v\right\}
$$

$L A(A)$: all terminal strings derivable from strings $A v$, where $u A v$ is a left sentential form of the grammar.
$L A(A \rightarrow w)$: is the subset of $L A(A)$ in which the subderivations $A v \stackrel{*}{\Rightarrow} x$ are initiated with the rule $A \rightarrow w$.
Definition 19.1.2 Let $G=(V, \Sigma, P, S)$ be a CFG and let k be a natural number greater than zero. i. trunc $_{k}$ is a function from $P\left(\Sigma^{*}\right)$ to $P\left(\Sigma^{*}\right)$:

$$
\operatorname{trunc}_{k}(X)=\{u \mid u \in X \text { with length }(u) \leq k \text { or } u v \in X \text { with length }(u)=k\}
$$

ii. The length-k lookahead set of the variable A :

$$
L A_{k}(A)=\operatorname{trunc}_{k}(L A(A))
$$

iii. The length-k lookahead set of the rule $A \rightarrow w$:

$$
L A_{k}(A \rightarrow w)=\operatorname{trunc}_{k}(L A(A \rightarrow w))
$$

The lookahead sets are computed from FIRST and FOLLOW sets.
Definition 19.2.1 Let $G=(V, \Sigma, P, S)$ be a CFG. For every string $u \in(V \cup \Sigma)^{*}$ and $k>0$, the set $\operatorname{FIRST}_{k}(u)$ is defined by:

$$
\operatorname{FIRST}_{k}(u)=\operatorname{trunc}_{k}\left(\left\{x \mid u \stackrel{*}{\Rightarrow} x, x \in \Sigma^{*}\right\}\right) .
$$

Algorithm 19.4.1

Construction of FIRST ${ }_{k}$ sets
input: context-free grammar $G=(V, \Sigma, P, S)$
private: F^{\prime} : the FIRST set from the previous iteration
F : the FIRST set

1. for each $a \in \Sigma$ do $F^{\prime}(a):=\{a\}$
2. for each $A \in V$ do
if $A \rightarrow \lambda$ is a rule in P then

$$
F(A):=\{\lambda\}
$$

else

$$
F(A):=\emptyset
$$

3. repeat
3.1 for each $A \in V$ do $F^{\prime}(A):=F(A)$
3.2 for each rule $A \rightarrow u_{1} u_{2} \ldots u_{n}$ with $n>0$ do $F(A):=F(A) \cup \operatorname{trunc}_{k}\left(F^{\prime}\left(u_{1}\right) F^{\prime}\left(u_{2}\right) \ldots F^{\prime}\left(u_{n}\right)\right)$ until $F(A)=F^{\prime}(A)$ for all $A \in V$
4. $\quad \operatorname{FIRST}_{k}(A):=F(A)$
return the FIRST sets

Example 19.4.1

$S \rightarrow A \# \#$
$A \rightarrow a A d \mid B C$
$B \rightarrow b B c \mid \lambda$
$C \rightarrow a c C \mid a d$

Construct the FIRST $_{1}$ sets. The first step is the initialization:
$F^{\prime}(a)=\{a\} \quad F^{\prime}(b)=\{b\} \quad F^{\prime}(c)=\{c\} \quad F^{\prime}(d)=\{d\} \quad F^{\prime}(\#)=\{\#\}$
$F(S)=\emptyset \quad F(A)=\emptyset \quad F(B)=\{\lambda\} \quad F(C)=\emptyset$

iteration 1:

rule $S \rightarrow A \# \#$

$$
F(S)=F(S) \cup \operatorname{trunc}_{1}\left(F^{\prime}(A) F^{\prime}(\#) F^{\prime}(\#)\right)=\emptyset \cup \operatorname{trunc}_{1}(\emptyset\{\#\}\{\#\})=\emptyset
$$

rule $A \rightarrow a A d$

$$
F(A)=F(A) \cup \operatorname{trunc}_{1}\left(F^{\prime}(a) F^{\prime}(A) F^{\prime}(d)\right)=\emptyset \cup \operatorname{trunc}_{1}(\{a\} \emptyset\{d\})=\emptyset
$$

rule $A \rightarrow B C$
$F(A)=F(A) \cup \operatorname{trunc}_{1}\left(F^{\prime}(B) F^{\prime}(C)\right)=\emptyset \cup \operatorname{trunc}_{1}(\{\lambda\} \emptyset)=\emptyset$
rule $B \rightarrow b B c$

$$
F(B)=F(B) \cup \operatorname{trunc}_{1}\left(F^{\prime}(b) F^{\prime}(B) F^{\prime}(c)\right)=\{\lambda\} \cup \operatorname{trunc}_{1}(\{b\}\{\lambda\}\{c\})=\{\lambda, b\}
$$

rule $C \rightarrow a c C$

$$
F(C)=F(C) \cup \operatorname{trunc}_{1}\left(F^{\prime}(a) F^{\prime}(c) F^{\prime}(C)\right)=\emptyset \cup \operatorname{trunc}_{1}(\{a\}\{c\} \emptyset)=\emptyset
$$

rule $C \rightarrow$ ad

$$
F(C)=F(C) \cup \operatorname{trunc}_{1}\left(F^{\prime}(a) F^{\prime}(d)\right)=\emptyset \cup \operatorname{trunc}_{1}(\{a\}\{d\})=\{a\}
$$

iteration 2:

rule $S \rightarrow A \# \#$
$F(S)=F(S) \cup \operatorname{trunc}_{1}\left(F^{\prime}(A) F^{\prime}(\#) F^{\prime}(\#)\right)=\emptyset \cup \operatorname{trunc}_{1}(\emptyset\{\#\}\{\#\})=\emptyset$
rule $A \rightarrow a A d$
$F(A)=F(A) \cup \operatorname{trunc}_{1}\left(F^{\prime}(a) F^{\prime}(A) F^{\prime}(d)\right)=\emptyset \cup \operatorname{trunc}_{1}(\{a\} \emptyset\{d\})=\emptyset$
rule $A \rightarrow B C$
$F(A)=F(A) \cup \operatorname{trunc}_{1}\left(F^{\prime}(B) F^{\prime}(C)\right)=\emptyset \cup \operatorname{trunc}_{1}(\{\lambda, b\}\{a\})=\{a, b\}$
rule $B \rightarrow b B c$
$F(B)=F(B) \cup \operatorname{trunc}_{1}\left(F^{\prime}(b) F^{\prime}(B) F^{\prime}(c)\right)=\{\lambda, b\} \cup \operatorname{trunc}_{1}(\{b\}\{\lambda, b\}\{c\})=\{\lambda, b\}($ still $)$
rule $C \rightarrow a c C$

$$
F(C)=F(C) \cup \operatorname{trunc}_{1}\left(F^{\prime}(a) F^{\prime}(c) F^{\prime}(C)\right)=\{a\} \cup \operatorname{trunc}_{1}(\{a\}\{c\}\{a\})=\{a\} \text { (still) }
$$

rule $C \rightarrow a d$
$F(C)=F(C) \cup \operatorname{trunc}_{1}\left(F^{\prime}(a) F^{\prime}(d)\right)=\{a\} \cup \operatorname{trunc}_{1}(\{a\}\{d\})=\{a\}($ still $)$

iteration 3:

rule $S \rightarrow A \# \#$

$$
F(S)=F(S) \cup \operatorname{trunc}_{1}\left(F^{\prime}(A) F^{\prime}(\#) F^{\prime}(\#)\right)=\emptyset \cup \operatorname{trunc}_{1}(\{a, b\}\{\#\}\{\#\})=\{a, b\}
$$

rule $A \rightarrow a A d$
$F(A)=F(A) \cup \operatorname{trunc}_{1}\left(F^{\prime}(a) F^{\prime}(A) F^{\prime}(d)\right)=\{a, b\} \cup \operatorname{trunc}_{1}(\{a\}\{a, b\}\{d\})=\{a, b\}$
rule $A \rightarrow B C$
$F(A)=F(A) \cup \operatorname{trunc}_{1}\left(F^{\prime}(B) F^{\prime}(C)\right)=\{a, b\} \cup \operatorname{trunc}_{1}(\{\lambda, b\}\{a\})=\{a, b\}$
rule $B \rightarrow b B c$
$F(B)=F(B) \cup \operatorname{trunc}_{1}\left(F^{\prime}(b) F^{\prime}(B) F^{\prime}(c)\right)=\{\lambda, b\} \cup \operatorname{trunc}_{1}(\{b\}\{\lambda, b\}\{c\})=\{\lambda, b\}($ still $)$
rule $C \rightarrow a c C$
$F(C)=F(C) \cup \operatorname{trunc}_{1}\left(F^{\prime}(a) F^{\prime}(c) F^{\prime}(C)\right)=\{a\} \cup \operatorname{trunc}_{1}(\{a\}\{c\}\{a\})=\{a\}$ (still)
rule $C \rightarrow a d$
$F(C)=F(C) \cup \operatorname{trunc}_{1}\left(F^{\prime}(a) F^{\prime}(d)\right)=\{a\} \cup \operatorname{trunc}_{1}(\{a\}\{d\})=\{a\}($ still $)$
$\operatorname{FIRST}_{1}(S)=\{a, b\}$
$\operatorname{FIRST}_{1}(A)=\{a, b\}$
$\operatorname{FIRST}_{1}(B)=\{\lambda, b\}$
$\operatorname{FIRST}_{1}(C)=\{a\}$
We will not be able to distinguish between the C rules with one step lookahead because they both start with a.
Construct the FIRST_{2} sets. The first step is the initialization:

$$
\begin{aligned}
& F^{\prime}(a)=\{a\} \quad F^{\prime}(b)=\{b\} \quad F^{\prime}(c)=\{c\} \quad F^{\prime}(d)=\{d\} \quad F^{\prime}(\#)=\{\#\} \\
& F(S)=\emptyset \quad F(A)=\emptyset \quad F(B)=\{\lambda\} \quad F(C)=\emptyset
\end{aligned}
$$

iteration 1:

rule $S \rightarrow A \# \#$

$$
F(S)=F(S) \cup \operatorname{trunc}_{2}\left(F^{\prime}(A) F^{\prime}(\#) F^{\prime}(\#)\right)=\emptyset \cup \operatorname{trunc}_{2}(\emptyset\{\#\}\{\#\})=\emptyset
$$

rule $A \rightarrow a A d$
$F(A)=F(A) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(A) F^{\prime}(d)\right)=\emptyset \cup \operatorname{trunc}_{2}(\{a\} \emptyset\{d\})=\emptyset$
rule $A \rightarrow B C$
$F(A)=F(A) \cup \operatorname{trunc}_{2}\left(F^{\prime}(B) F^{\prime}(C)\right)=\emptyset \cup \operatorname{trunc}_{2}(\{\lambda\} \emptyset)=\emptyset$
rule $B \rightarrow b B c$

$$
F(B)=F(B) \cup \operatorname{trunc}_{2}\left(F^{\prime}(b) F^{\prime}(B) F^{\prime}(c)\right)=\{\lambda\} \cup \operatorname{trunc}_{2}(\{b \lambda c\})=\{\lambda, b c\}
$$

rule $C \rightarrow a c C$

$$
F(C)=F(C) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(c) F^{\prime}(C)\right)=\emptyset \cup \operatorname{trunc}_{2}(\{a\}\{c\} \emptyset)=\emptyset
$$

rule $C \rightarrow a d$

$$
F(C)=F(C) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(d)\right)=\emptyset \cup \operatorname{trunc}_{2}(\{a\}\{d\})=\{a d\}
$$

iteration 2:

rule $S \rightarrow A \# \#$

$$
F(S)=F(S) \cup \operatorname{trunc}_{2}\left(F^{\prime}(A) F^{\prime}(\#) F^{\prime}(\#)\right)=\emptyset \cup \operatorname{trunc}_{2}(\emptyset\{\#\}\{\#\})=\emptyset
$$

rule $A \rightarrow a A d$
$F(A)=F(A) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(A) F^{\prime}(d)\right)=\emptyset \cup \operatorname{trunc}_{2}(\{a\} \emptyset\{d\})=\emptyset$
rule $A \rightarrow B C$
$F(A)=F(A) \cup \operatorname{trunc}_{2}\left(F^{\prime}(B) F^{\prime}(C)\right)=\emptyset \cup \operatorname{trunc}_{2}(\{\lambda, b c\}\{a d\})=\{a d, b c\}$
rule $B \rightarrow b B c$
$F(B)=F(B) \cup \operatorname{trunc}_{2}\left(F^{\prime}(b) F^{\prime}(B) F^{\prime}(c)\right)=\{\lambda, b c\} \cup \operatorname{trunc}_{2}(\{b\}\{\lambda, b c\}\{c\})=\{\lambda, b c, b b\}$
rule $C \rightarrow a c C$
$F(C)=F(C) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(c) F^{\prime}(C)\right)=\{a d\} \cup \operatorname{trunc}_{2}(\{a\}\{c\}\{a d\})=\{a d, a c\}$
rule $C \rightarrow a d$
$F(C)=F(C) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(d)\right)=\{a d, a c\} \cup \operatorname{trunc}_{2}(\{a\}\{d\})=\{a d\}$ (RHS is only terminals)

iteration 3:

rule $S \rightarrow A \# \#$

$$
F(S)=F(S) \cup \operatorname{trunc}_{2}\left(F^{\prime}(A) F^{\prime}(\#) F^{\prime}(\#)\right)=\emptyset \cup \operatorname{trunc}_{2}(\{a d, b c\}\{\#\}\{\#\})=\{a d, b c\}
$$

rule $A \rightarrow a A d$
$F(A)=F(A) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(A) F^{\prime}(d)\right)=\{a d, b c\} \cup \operatorname{trunc}_{2}(\{a\}\{a d, b c\}\{d\})=\{a d, b c, a a, a b\}$
rule $A \rightarrow B C$
$F(A)=F(A) \cup \operatorname{trunc}_{2}\left(F^{\prime}(B) F^{\prime}(C)\right)=\{a d, b c, a a, a b\} \cup \operatorname{trunc}_{2}(\{\lambda, b\}\{a\})=\{a d, b c, a a, a b, b b, a c\}$
rule $B \rightarrow b B c$
$F(B)=F(B) \cup \operatorname{trunc}_{2}\left(F^{\prime}(b) F^{\prime}(B) F^{\prime}(c)\right)=\{\lambda, b c, b b\} \cup \operatorname{trunc}_{2}(\{b\}\{\lambda, b c, b b\}\{c\})=\{\lambda, b c, b b\}$
(still)
rule $C \rightarrow a c C$
$F(C)=F(C) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(c) F^{\prime}(C)\right)=\{a d, a c\} \cup \operatorname{trunc}_{2}(\{a\}\{c\}\{a d, a c\})=\{a d, a c\}$
(still)
rule $C \rightarrow a d$
$F(C)=F(C) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(d)\right)=\{a d, a c\} \cup \operatorname{trunc}_{2}(\{a\}\{d\})=\{a d, a c\}$ (still)

iteration 4:

rule $S \rightarrow A \# \#$
$F(S)=F(S) \cup \operatorname{trunc}_{2}\left(F^{\prime}(A) F^{\prime}(\#) F^{\prime}(\#)\right)=\emptyset \cup \operatorname{trunc}_{2}(\{a d, b c, a a, a b, b b, a c\}\{\#\}\{\#\})=$ $\{a d, b c, a a, a b, b b, a c\}$
others don't change:
rule $A \rightarrow a A d$
$F(A)=F(A) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(A) F^{\prime}(d)\right)=$
$\{a d, b c, a a, a b, b b, a c\} \cup \operatorname{trunc}_{2}(\{a\}\{a d, b c, a a, a b, b b, a c\}\{d\})=\{a d, b c, a a, a b, b b, a c\}$
rule $A \rightarrow B C$
$F(A)=F(A) \cup \operatorname{trunc}_{2}\left(F^{\prime}(B) F^{\prime}(C)\right)=$
$\{a d, b c, a a, a b, b b, a c\} \cup \operatorname{trunc}_{2}(\{\lambda, b\}\{a\})=\{a d, b c, a a, a b, b b, a c\}$
rule $B \rightarrow b B c$
$F(B)=F(B) \cup \operatorname{trunc}_{2}\left(F^{\prime}(b) F^{\prime}(B) F^{\prime}(c)\right)=\{\lambda, b c, b b\} \cup \operatorname{trunc}_{2}(\{b\}\{\lambda, b c, b b\}\{c\})=\{\lambda, b c, b b\}$
rule $C \rightarrow a c C$
$F(C)=F(C) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(c) F^{\prime}(C)\right)=\{a d, a c\} \cup \operatorname{trunc}_{2}(\{a\}\{c\}\{a d, a c\})=\{a d, a c\}$
rule $C \rightarrow a d$
$F(C)=F(C) \cup \operatorname{trunc}_{2}\left(F^{\prime}(a) F^{\prime}(d)\right)=\{a d, a c\} \cup \operatorname{trunc}_{2}(\{a\}\{d\})=\{a d, a c\}$
$\operatorname{FIRST}_{2}(S)=\{a d, b c, a a, a b, b b, a c\}$
$\operatorname{FIRST}_{2}(A)=\{a d, b c, a a, a b, b b, a c\}$
$\operatorname{FIRST}_{2}(B)=\{\lambda, b c, b b\}$
$\operatorname{FIRST}_{2}(C)=\{a d, a c\}$

