Algorithm 4.6.1
 The CYK algorithm

input: context-free grammar $G=(V, \Sigma, P, S)$
string $u=x_{1} x_{2} \ldots x_{n} \in \Sigma^{*}$
private:
X : a table containing sets of variables
step : the index of the "diagonal", the main diagonal is 1 , the one above it is 2 , and so on.
i : row index (the column index is calculated from it)
k : split position in the string
// Initialize the entire table.

1. initialize all $X_{i, j}$ to \emptyset
// Initialize the main diagonal from the rules that derive the terminals of the string.
2. for $i=1$ to n
for each variable A
if there is a rule $A \rightarrow x_{i, i}$ then

$$
X_{i, i}:=X_{i, i} \cup\{A\}
$$

// Do for each "diagonal."
3. for $s t e p=2$ to n
// The cells start from $i, i+$ step -1 .
3.1 for $i=1$ to $n-$ step +1
// Do for each split position.
3.1.1 for $k=i$ to $i+$ step -2
if there are variables $B \in X_{i, k}, C \in X_{k+1, i+\text { step }-1}$, and a rule $A \rightarrow B C$ then

$$
X_{i, i+\text { step }-1}=X_{i, i+\text { step }-1} \cup\{A\}
$$

4. if $S \in X_{1, n}$ then
return TRUE
else
return FALSE
