CS3311 handout

The CYK Algorithm

Algorithm 4.6.1 The CYK algorithm

input: context-free grammar $G = (V, \Sigma, P, S)$ string $u = r, r_0, \dots, r_n \in \Sigma^*$

string
$$u = x_1 x_2 \dots x_n \in \Sigma$$

private:

X: a table containing sets of variables step: the index of the "diagonal", the main diagonal is 1, the one above it is 2, and so on. *i*: row index (the column index is calculated from it) k: split position in the string

// Initialize the entire table.

1. initialize all $X_{i,j}$ to \emptyset

// Initialize the main diagonal from the rules that derive the terminals of the string.

2. **for** i = 1 to n

for each variable A if there is a rule $A \to x_{i,i}$ then $X_{i,i} := X_{i,i} \cup \{A\}$

// Do for each "diagonal."

3. for step = 2 to n

```
// The cells start from i, i + step - 1.
3.1 for i = 1 to n - step + 1
```

// Do for each split position. 3.1.1 for k = i to i + step - 2if there are variables $B \in X_{i,k}, C \in X_{k+1,i+step-1}$, and a rule $A \to BC$ then $X_{i,i+step-1} = X_{i,i+step-1} \cup \{A\}$

4. if $S \in X_{1,n}$ then

return TRUE

else

return FALSE