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Short biography

● BSc in Computer Engineering
Orta Dogu Teknik Universitesi

● MSc in Computer Engineering
Orta Dogu Teknik Universitesi

● Worked as a systems analyst
● PhD in Computer Science

University of Pittsburgh
● Came to Michigan Tech in 1999 



  

Who motivated me

● My parents and family
● Faculty, advisors, bosses



  

Research Area

Decision Making 
Under Uncertainty

Computer Science

Planning

Artificial Intelligence



  

Courses I teach

● CS1000 – Explorations in Computing
undergrad, required

● CS 3311 - Formal Models of Computation
undergrad, required

● CS 4811 – Artificial Intelligence
undergrad, elective

● CS 5811 – Advanced Artificial Intelligence
grad

● SSE 3200, CS 3090 – Web Based Services
undergrad
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Tips to connect with faculty

● Don't hesitate to initiate conversations with your 
professors

● Lots of professional advantages to getting to 
know each other

● Logistics, scheduling



  

Outline

● Information about me (done)
● Tips to connect with faculty (done)
● Course information
● Computer Science curricula



  

CS1000

● “Explorations” in Computing
● Explorations that lead to success in

● Academic life
● Career planning

● Forward looking course
● Check out the course syllabus
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flowchart



  

Question

● Where do curricula come from?



  



  

What to consider when designing a 
curriculum?

● Reflects the state of the art body of disciplinary 
knowledge (reasonable size)

● Is rigorous
● Is flexible to meet needs of individual 

departments and students 
● Is pedagogically sound and complete
● Has good breadth and depth coverage
● Considers input and feedback from a broad 

community
● Revised continually



  

Characteristics of CS graduates

● Technical understanding of computer science
● Familiarity with common themes and principles
● Appreciation of the interplay between theory 

and practice
● System-level perspective
● Awareness of the broad applicability of 

computing



  

Characteristics of CS graduates 
(cont'd)

● Problem solving skills
● Project experience
● Commitment to life-long learning
● Commitment to professional responsibility
● Communication and organizational skills
● Appreciation of specific knowledge in other 

domains (cross disciplinary)



  

Knowledge areas and core hours

● Technologies change rapidly over time
● Essential concepts, perspectives, and 

methodologies that are constant define 
computer science

● The body of knowledge is organized into 18 
knowledge areas. For each
● Tier 1: essential for all CS programs
● Tier 2: individual programs choose their coverage

● Knowledge areas are not intended to describe 
specific courses



  

Knowledge Area Tier 1 Tier 2 Total

Algorithms and complexity 19 9 28

Architecture and Organization 0 16 16

Computational Science 1 0 1

Discrete Structures 37 4 41

Graphics and Visualization 2 1 3

Human-computer interaction 4 4 8

Information assurance and security 3 6 9

Information management 1 9 10

Intelligent systems 0 10 10

Networking and communication 3 7 10

Operating systems 4 11 15

Platform-based development 0 0 0

Parallel and distributed computing 5 10 15

Programming languages 8 20 28

Software development fundamentals 43 0 43

Software engineering 6 22 28

Systems fundamentals 18 9 27

Social issues and professional practice 11 5 16

Total core hours 165 143 308



  

Totals

● All Tier1 + All Tier2 308 (8 courses)
● All Tier1 + 90% of Tier2 294 (7 courses)
● All Tier1 + 80% of Tier2 280 (7 courses)



  

Computer science degree flowchart



  

Software engineering degree 
flowchart



  

Software Development 
Fundamentals (43 hours)

● Reading and writing programs in multiple 
programming languages

● Utilize modern development and testing tools
● Focuses on the entire software development 

process as well
● Includes:

● Algorithms and design
● Data structures



  

Discrete structures (41 hours)

● Foundational material:   supports other areas
● Ability to create and understand a proof

formal specification, verification, databases, 
cryptography

● Graph theory
used in networks, operating systems, and 
compilers

● Logic, counting, discrete probability



  

Software engineering (28 hours)

● Software engineering is the discipline 
concerned with the application of theory, 
knowledge, and practice to effectively build 
reliable software systems that satisfy the 
requirements of customers and users

● Producing software systems: professionalism, 
quality, schedule, and cost are critical

● A wide variety of software engineering practices 
have been developed

● Consider trade-offs when selecting and 
applying different practices



  

Algorithms and complexity
(28 hours)

● Good algorithm design is crucial for the 
performance of all software systems

● There are a range of algorithms that address an 
important set of well-defined problems 

● Recognize their strengths and weaknesses, 
and their suitability in particular contexts



  

Programming languages (28 hours)

● Programming languages are the medium 
through which programmers precisely describe 
concepts, formulate algorithms, and reason 
about solutions

● Making informed design choices by 
understanding the languages supporting 
multiple complementary approaches

● Basic knowledge of programming language 
translation



  

Systems fundamentals (27 hours)

● The underlying hardware and software 
infrastructure upon which applications are 
constructed is collectively described by the term 
“computer systems”

● Broadly spans
● Operating systems
● Parallel and distributed systems
● Communication networks
● Computer architecture



  

Architecture and organization
(16 hours)

● Understand the hardware environment upon 
which all computing is based, and the interface 
it provides to higher software layers

● Develop programs that can achieve high 
performance through a programmer's 
awareness of parallelism and latency

● Select a system use through an understanding 
of the trade-off among various components, 
such as CPU clock speed, cycles per 
instruction, memory size, and average memory 
access time.



  

Social issues and professional 
practice (16 hours)

● In addition to the technical issues in computing 
students must be exposed to the larger societal 
context of computing 

● Developing an understanding of the relevant 
social, ethical, legal and professional issues

● Anticipate the impact of introducing a given 
product into a given environment
● Enhance or degrade the quality of life
● Impact upon individuals, groups, and institutions?

● Legal rights of software and hardware vendors 
and users, ethical values



  

Operating systems (15 hours)

● An operating system (O/S)
● Defines an abstraction of hardware
● Manages resource sharing among the computer's 

users

● Basic topics taught
● Interface of an operating system to networks
● Kernel and user modes
● Approaches to O/S design and implementation



  

Parallel and distributed computing
(15 hours)

● Was a largely elective topic before multi-core 
processors and distributed data centers

● Logically simultaneous execution of multiple 
processes whose operations have the potential 
to interleave in complex ways

● Models of communication and coordination 
among processes

● Security and fault tolerance in distributed 
systems



  

Summary

● Information about me
(done)

● Tips to connect with 
faculty (done)

● Course information
(done)

● Computer Science 
curricula (done)

● Reliability
● Correctness
● Performance
● Abstraction
● Layers
● Trade-offs
● Representation
● Algorithms
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