

Welcome!

CS1000
Explorations in Computing

Department of Computer Science
Michigan Technological University

Dr. Nilufer Onder
Fall 2015

Fisher 139

Outline

● Information about me
● Tips to connect with faculty
● Course information
● Computer Science curricula

Short biography

● BSc in Computer Engineering
Orta Dogu Teknik Universitesi

● MSc in Computer Engineering
Orta Dogu Teknik Universitesi

● Worked as a systems analyst
● PhD in Computer Science

University of Pittsburgh
● Came to Michigan Tech in 1999

Who motivated me

● My parents and family
● Faculty, advisors, bosses

Research Area

Decision Making
Under Uncertainty

Computer Science

Planning

Artificial Intelligence

Courses I teach

● CS1000 – Explorations in Computing
undergrad, required

● CS 3311 - Formal Models of Computation
undergrad, required

● CS 4811 – Artificial Intelligence
undergrad, elective

● CS 5811 – Advanced Artificial Intelligence
grad

● SSE 3200, CS 3090 – Web Based Services
undergrad

Outline

● Information about me (done)
● Tips to connect with faculty
● Course information
● Computer Science curricula

Tips to connect with faculty

● Don't hesitate to initiate conversations with your
professors

● Lots of professional advantages to getting to
know each other

● Logistics, scheduling

Outline

● Information about me (done)
● Tips to connect with faculty (done)
● Course information
● Computer Science curricula

CS1000

● “Explorations” in Computing
● Explorations that lead to success in

● Academic life
● Career planning

● Forward looking course
● Check out the course syllabus

Outline

● Information about me (done)
● Tips to connect with faculty (done)
● Course information (done)
● Computer Science curricula

Computer science degree flowchart

Software engineering degree
flowchart

Question

● Where do curricula come from?

What to consider when designing a
curriculum?

● Reflects the state of the art body of disciplinary
knowledge (reasonable size)

● Is rigorous
● Is flexible to meet needs of individual

departments and students
● Is pedagogically sound and complete
● Has good breadth and depth coverage
● Considers input and feedback from a broad

community
● Revised continually

Characteristics of CS graduates

● Technical understanding of computer science
● Familiarity with common themes and principles
● Appreciation of the interplay between theory

and practice
● System-level perspective
● Awareness of the broad applicability of

computing

Characteristics of CS graduates
(cont'd)

● Problem solving skills
● Project experience
● Commitment to life-long learning
● Commitment to professional responsibility
● Communication and organizational skills
● Appreciation of specific knowledge in other

domains (cross disciplinary)

Knowledge areas and core hours

● Technologies change rapidly over time
● Essential concepts, perspectives, and

methodologies that are constant define
computer science

● The body of knowledge is organized into 18
knowledge areas. For each
● Tier 1: essential for all CS programs
● Tier 2: individual programs choose their coverage

● Knowledge areas are not intended to describe
specific courses

Knowledge Area Tier 1 Tier 2 Total

Algorithms and complexity 19 9 28

Architecture and Organization 0 16 16

Computational Science 1 0 1

Discrete Structures 37 4 41

Graphics and Visualization 2 1 3

Human-computer interaction 4 4 8

Information assurance and security 3 6 9

Information management 1 9 10

Intelligent systems 0 10 10

Networking and communication 3 7 10

Operating systems 4 11 15

Platform-based development 0 0 0

Parallel and distributed computing 5 10 15

Programming languages 8 20 28

Software development fundamentals 43 0 43

Software engineering 6 22 28

Systems fundamentals 18 9 27

Social issues and professional practice 11 5 16

Total core hours 165 143 308

Totals

● All Tier1 + All Tier2 308 (8 courses)
● All Tier1 + 90% of Tier2 294 (7 courses)
● All Tier1 + 80% of Tier2 280 (7 courses)

Computer science degree flowchart

Software engineering degree
flowchart

Software Development
Fundamentals (43 hours)

● Reading and writing programs in multiple
programming languages

● Utilize modern development and testing tools
● Focuses on the entire software development

process as well
● Includes:

● Algorithms and design
● Data structures

Discrete structures (41 hours)

● Foundational material: supports other areas
● Ability to create and understand a proof

formal specification, verification, databases,
cryptography

● Graph theory
used in networks, operating systems, and
compilers

● Logic, counting, discrete probability

Software engineering (28 hours)

● Software engineering is the discipline
concerned with the application of theory,
knowledge, and practice to effectively build
reliable software systems that satisfy the
requirements of customers and users

● Producing software systems: professionalism,
quality, schedule, and cost are critical

● A wide variety of software engineering practices
have been developed

● Consider trade-offs when selecting and
applying different practices

Algorithms and complexity
(28 hours)

● Good algorithm design is crucial for the
performance of all software systems

● There are a range of algorithms that address an
important set of well-defined problems

● Recognize their strengths and weaknesses,
and their suitability in particular contexts

Programming languages (28 hours)

● Programming languages are the medium
through which programmers precisely describe
concepts, formulate algorithms, and reason
about solutions

● Making informed design choices by
understanding the languages supporting
multiple complementary approaches

● Basic knowledge of programming language
translation

Systems fundamentals (27 hours)

● The underlying hardware and software
infrastructure upon which applications are
constructed is collectively described by the term
“computer systems”

● Broadly spans
● Operating systems
● Parallel and distributed systems
● Communication networks
● Computer architecture

Architecture and organization
(16 hours)

● Understand the hardware environment upon
which all computing is based, and the interface
it provides to higher software layers

● Develop programs that can achieve high
performance through a programmer's
awareness of parallelism and latency

● Select a system use through an understanding
of the trade-off among various components,
such as CPU clock speed, cycles per
instruction, memory size, and average memory
access time.

Social issues and professional
practice (16 hours)

● In addition to the technical issues in computing
students must be exposed to the larger societal
context of computing

● Developing an understanding of the relevant
social, ethical, legal and professional issues

● Anticipate the impact of introducing a given
product into a given environment
● Enhance or degrade the quality of life
● Impact upon individuals, groups, and institutions?

● Legal rights of software and hardware vendors
and users, ethical values

Operating systems (15 hours)

● An operating system (O/S)
● Defines an abstraction of hardware
● Manages resource sharing among the computer's

users

● Basic topics taught
● Interface of an operating system to networks
● Kernel and user modes
● Approaches to O/S design and implementation

Parallel and distributed computing
(15 hours)

● Was a largely elective topic before multi-core
processors and distributed data centers

● Logically simultaneous execution of multiple
processes whose operations have the potential
to interleave in complex ways

● Models of communication and coordination
among processes

● Security and fault tolerance in distributed
systems

Summary

● Information about me
(done)

● Tips to connect with
faculty (done)

● Course information
(done)

● Computer Science
curricula (done)

● Reliability
● Correctness
● Performance
● Abstraction
● Layers
● Trade-offs
● Representation
● Algorithms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

