
CS-1000 An Introduction to Computer
Architecture

Dr. Soner Onder
Michigan Tech

October 13, 2015

About Me

• BSc degree in Chemical Engineering from METU, Ankara,
Turkey.

• MSc in Computer Engineering, METU, Ankara, Turkey.
• PhD in Computer Science, University of Pittsburgh, PA.
• Worked in industry both as a systems programmer, as

well as a field engineer (8+ Years) before starting my Phd.
• Developed thousands of lines of code, most of which were

utilized heavily.

About Me

• Married to one of your
professors.

• Have two kids, one is majoring
in Chemical Engineering, the
other is a sophomore in
Calumet High School.

• Have a furry orange tabby cat
– He probably is wearing a

costume (not sure).
– Acts like a black cat in

Halloween.

That is not him !

My view of Computer Science

Theory
Algorithms

Systems

All other fields in CS
Without Algorithms and Theory
there is NO Computer Science.

Without SYSTEMS, there is
NO MACHINE (i.e., Computer).

What is SYSTEMS?

 The core is Computer Architecture.
 Programming Languages and Compilers.
 Operating Systems.
 Computer Networks.

Without COMPUTER, there is no
Smart Phone !

Intel 4004 (1971)
Maximum clock rate was 740 kHz.
Instruction cycle time: 10.8 µs.
(8 clock cycles / instruction cycle)
46300 to 92600 instructions per second.

Adding two 8-digit numbers (32 bits each,
assuming 4-bit BCD digits) was stated as taking
850 µs - i.e. 79 instruction cycles,
about 10 instruction cycles per decimal digit.

Instruction set contained 46 instructions (of
which 41 were 8 bits wide and 5 were 16 bits
wide)

Register set contained 16 registers of 4 bits
each

Intel Core Architecture (2006)

Clock rate 3GHZ.
6 - 9 Billion Instructions per second.

L1 cache 64 kB per core
L2 cache 1 MB to 8 MB unified
L3 cache 8 MB to 16 MB shared (Xeon)
Transistors 105M 65 nm

Intel Core i7 (2008)
Clock rate 3-3.5 GHZ.
6 -9 Billion Instructions per second/CPU.

Transistors
 730M 45 nm
 1.8 B (6 core – 2013)
 5.560 B (18-core Xeon Haswell- 2014)
Outlook:
 100 B transistors in 2020 !

Is Computer Architecture Circuits (Hardware)?

• No. But you need to understand how the hardware works.
• It is how we put together circuits (at a higher level of

abstraction, and algorithmically):
– Intel Core i7 (single core) / Intel 4004 =
– 3,000,000,000 (Hz) / 740,000 (Hz) = 4054 times faster.
– 6,000,000,000 (instructions/sec) / 92600 (instructions/sec) = 64,795
– A factor of roughly 16 in performance !

• That is the power of computer architecture:
– Modern processors process multiple instructions per cycle
– They act speculatively to mitigate delays
– They use sophisticated algorithms to efficiently execute programs.

Computer Architecture

Computer Architecture is a core field of computer science
which sits at the cross-roads of abstractions.
– Very vibrant field – needs always changing together with

opportunities.
• New circuit techniques enable new architectures.
• New architectures may facilitate new techniques.

– Optimize for power, performance (or both).

• Computer Architecture can potentially impact everything
(yes, you can also save the world by being an architect!)

• Very high paying (and satisfying) good jobs too ..
– Processors are everywhere from simple machines to war planes,

from factories to kitchen appliances.

Revisiting Computer Science

• It is the science of creating and utilizing abstractions to
achieve computation.

• Using abstractions is the only way we know to create
complex systems.

• Computer Architecture is a core field of computer
science which sits at the cross-roads of abstractions.

– Only if you learn and understand all the layers we use in

computation you can become a good architect.

12

2. Algorithm

3. Language (Program)

4. Instructions (ISA)

5. Micro-Architecture

1. Problem

6. Circuit

Hardware ?

Software ?

7. Electrons

SYSTEMS !

Layers of Abstractions

Computer Architecture

Compiler

My Research

• Primarily concentrated on three fronts :
1. Seeking alternative forms of execution models so that sequential

programs can be executed efficiently by highly parallel
architectures.

2. Dealing with latency/delays : Seeking ways to execute dependent
instructions together.

3. Applying AI techniques on Computer Architecture, primarily on
simulators to verify their correctness and further understand
behavior of complex architectures.

Project Sphinx

14

This is a joint four year project between MTU
and FSU

(Co-PIs : Soner Onder and David Whalley)

Funded by NSF ($745,000, MTU Share
$560,000, MTU is the lead institution).

Project Goals:

 Exploit both regular and irregular parallelism.
 Massive ILP through LaZy execution.
 Imperative programming languages by
translating to FGSA.
 Single-assignment form for both the compiler
and the architecture.
 Multi-core uniprocessor!

An FGSA Example

use x

B2

B3

B4

B1

use x

x =
y =

if (P)

x =
y =

if (Q)

original program

Y N

Y N use x3

B2

B3

B4

B1

use x3

x1 =
y1 =

x3 = ψ(p, ¬p)(x2f, x1)
if (P)

x2 =
y2 =

if (Q)

FGSA

CC = <<{B1.x,B2.x}, {B3.x,B4.x}>, {p, ¬ p},ψ>

Algorithms for converting
programs into FGSA:

Dr. Shuhan Ding
PhD in 2012
Michigan Tech

Supporting Execution Models - the old shoe
do i=0 step 1 until n
sum = sum + a[i];
print sum;

ρ1 = true
ρ2 = true
x0 = 0
y0 = a
k0 = n << 2
m0 = y0 + k0

x1 = ψ ρ1(x0, x2)
y1 = ψ ρ2(y0, y2)
z0 = M[y1]
x2 = x1 + z0
y2 = y1 + 4
p = y2 <= m0

if (p)

x3 = η ¬p(x2)
print x3

ρ1

true

ρ2

true

x0

0

y0

a

k0

m0

 n

4

1

a+4

 x1

0

false

 y1

a

false

a[0]

 z0

 x2

 y2

 p

10

a[1]

20

10 10 a+4 true 10 a+4 20 30 a+8 false

 x3

30 30

Supporting Execution Models – demand
driven execution do i=0 step 1 until n

sum = sum + a[i];
print sum;

ρ1 = true
ρ2 = true
x0 = 0
y0 = a
k0 = n << 2
m0 = y0 + k0

x1 = ψ ρ1(x0, x2)
y1 = ψ ρ2(y0, y2)
z0 = M[y1]
x2 = x1 + z0
y2 = y1 + 4
p = y2 <= m0

if (p)

x3 = η ¬p(x2)
print x3

ρ1

true

ρ2

true

x0

0

y0

a

 k0

m0

 n

4

1

a+4

 x1

0

false

 y1

a

false

a[0]

 z0

 x2

 y2

 p

10

a[1]

20

10 a+4

10

true

 x3

 x3

 p, x2

 y2,m0,x1,z0

 y1,y0,k0,ρ1

Demand

Execute

 ρ1,k0,y0 ρ2

x0 ρ2

x0,m0,y1

z0,y2,x1

p,x2

End of first iteration.
η sees that ¬ p is false
and demands both p and
x2 again.

	CS-1000 An Introduction to Computer Architecture
	About Me
	About Me
	Slide Number 4
	My view of Computer Science
	Intel 4004 (1971)
	Intel Core Architecture (2006)
	Intel Core i7 (2008)
	Is Computer Architecture Circuits (Hardware)?
	Computer Architecture
	Revisiting Computer Science
	Slide Number 12
	My Research
	Project Sphinx
	An FGSA Example
	Supporting Execution Models - the old shoe
	Supporting Execution Models – demand driven execution

