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Abstract Causal Probabilistic Networks (CPNs), 
(a.k.a. Bayesian Networks, or Belief Networks) are 
well-established representations in biomedical 
applications such as decision support systems and 
predictive modeling or mining of causal 
hypotheses. CPNs (a) have well-developed theory 
for induction of causal relationships, and (b) are 
suitable for creating sound and practical decision 
support systems. While several public domain and 
commercial tools exist for modeling and inference 
with CPNs, very few software tools and libraries 
exist currently that give access to algorithms for 
CPN induction. To that end, we have developed a 
software library, called Causal Explorer, that 
implements a suit of global, local and partial CPN 
induction algorithms. The toolkit emphasizes 
causal discovery algorithms. Approximately half of 
the algorithms are enhanced implementations of 
well-established algorithms, and the remaining 
ones are novel local and partial algorithms that 
scale to thousands of variables and thus are 
particularly suitable for modeling in massive 
datasets.  
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1 Introduction and Goals 
 
Bayesian Networks (BNs) are 
computational and mathematical objects 
that represent compactly joint probability 
distributions by means of a directed 

acyclic graph denoting dependencies and 
independencies among variables and 
conditional probability distributions of 
each variable given its parents in the graph 
[1]. The fundamental axiom of BNs is the 
Markov Condition that allows for a 
concise factorization of the joint 
distribution and captures the main 
characteristic of causation in macroscopic 
systems, namely that causation is local [2]. 
This leads naturally to Causal Probabilistic 
Networks (CPNs), i.e., a special class of 
Bayesian Networks (BNs) [3] in which 
edges between any two variables in the 
graph denote direct causal relationships 
between the two variables [3]. A review of 
applications of CPNs and BNs in 
biomedicine is outside the scope of this 
paper, however we do note that CPNs and 
BNs although introduced a mere 15 years 
ago have already led to a long series of 
pioneering biomedical applications in 
diagnostic, treatment selection, predictive 
modeling and causal hypothesis generation 
tasks [4-12].  
    CPNs are also increasingly recognized 
in bioinformatics and computational 
biology, as important representations for 
modeling causal relationships at a finer 
granularity than standard clustering or 

 



regression methods, and as having sound 
statistical foundations for handling noise, 
missing data and doing inference [13]. The 
appeal of CPNs is that, contrary to the 
pioneering heuristic approaches for 
generation of causal hypotheses in 
bioinformatics and medical research, (e.g., 
methods that were based on clustering, 
regression, and variable selection as in 
[14,15,16]) the recently-developed theory 
of causal induction using graphical models 
and related distributions, provides 
guarantees for highly sensitive and specific 
discovery of causal relationships [3]. For 
example, it has been theoretically proven 
that such methods can be used to reliably 
infer causal relationships among variables 
in: distributions captured by acyclic graphs 
(i.e., when feedback loops are not present) 
[3]; continuous linear gaussian systems 
with feedback loops in equilibria [3]; 
dynamic systems outside equilibrium 
sampled at discrete time points [17]; and 
linear or non-linear systems of discrete 
variables in equilibria [18].  
    CPN induction algorihms have also 
been used to find the minimal set of 
predictors needed for the classification of 
one or more variables of interest [19,20], 
known as the “Markov Blanket” (set of 
direct causes, direct effects, and direct 
causes of the direct effects) of a variable.  
Domain-specific molecular biology 
applications of CPNs so far fall under the 
categories of prediction of bioactivity from 
structural molecular properties (e.g., [21]) 
and induction of regulatory networks and 
putative causal relationships from 
expression data (e.g., [22]). These 
applications are very recent and as such 
only indicative of the great promise these 
tools hold for biomedical discovery. 
    The goal of the present work is to make 
available the powerful technology of CPN 
learning to a wide range of biomedical 
researchers that otherwise would not have 

access to it due to lack of technical 
familiarity or resources (for 
implementation and testing). In addition, 
we wish to stimulate research with a novel 
set of CPN algorithms we have developed 
for datasets with very large numbers of 
variables [28]. 
 
2 The Causal Explorer Toolkit 
 
Currently a rich variety of software is 
available for modeling and inference with 
BNs but only a limited amount of 
commercial and public domain software 
for learning CPNs from data is available to 
researchers (e.g., [23,24]; for a 
comprehensive collection, see: 
http://www.ai.mit.edu/~murphyk/ 
Software/bnsoft.html).  
    CPN induction algorithms come in two 
flavors: Bayesian (search-and-score) 
approaches, and conditional independence 
approaches [2]. Even with distributional 
assumptions that reduce computational 
complexity significantly, all known 
algorithms are practically not practical for 
inferring networks with more than a few 
hundred variables [3,21,23]. This has led 
some researchers to pursue modified CPN 
learners that instead of the full network, 
learn a “local neighborhood” around one 
or more variables of interest (Local Causal 
Discovery). Such methods are Markov 
Blanket algorithms [20,28] that can 
efficiently be applied for tens of thousands 
of variables. Another highly scalable 
alternative is to learn only some of the 
causal relationships (this strategy is also 
referred to as “Local Causal Discovery” 
although more precisely it is a Partial 
Causal Discovery approach) [25].   
   We introduce here a software library 
(which we call Causal Explorer) that 
provides researchers with code that can be 
used for experimentation with CPN 
learning. The selection of algorithms 
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3.1 PC emphasizes highly-scalable causal 
discovery (via local and partial methods as 
explained above), reliable and fast 
implementations and convenient 
integration to custom code.  The toolkit is 
provided as compiled Matlab [26] 
functions (in the form of DLLs) running 
on Wintel platforms. The reasons for this 
choice are fourfold: (a) Matlab is a 
versatile and wide-spread environment for 
experimentation with data mining and 
modeling tasks in mathematic and 
engineering; (b) Matlab executables can be 
interfaced with practically any standard 
language such as C++, Java, etc. (c) As 
newer versions of the contained algorithms 
are being developed, transfer to the toolkit 
can be made very quickly (compared to the 
much slower process of re-writing the new 
algorithms in C++ or Perl etc.); (d) Matlab 
code if written correctly (i.e., in 
“vectorized” form) is very efficient and in 
our experiments it often outperformes 
native implementations of the algorithms 
written in C/C++ etc.  

 

PC is a prototypical global algorithm for 
causal discovery with well-developed 
theory and several applications [3]. The 
Causal Explorer implementation of PC 
does not impose limits on the number of 
variables or cases in the input, and is 
conveniently callable from other code via 
the provided API. 
 

3.2 TPDA (Three Phase Dependency 
Analysis, a.k.a. BN PowerConstructor) 
 

TPDA is also a global algorithm that 
achieves polynomial-time execution if a 
constraint on the variables distribution is 
enforced [24]. The Causal Explorer 
implementation of TPDA employs a very 
fast implementation of mutual information 
and does not restrict the number of input 
variables or cases unlike the version 
distributed by the TPDA inventors). It is 
also easily callable from other code. 
 

3.3 Sparse Candidate Algorithm 
 

This is a fast search-and-score algorithm 
designed for sparsely connected domains 
e.g., gene pathways [22].  

    The toolkit is provided free of charge 
for non-commercial research. Code, 
example data, and documentation are 
available at: http://discover1.mc.vanderbilt. 
edu/discover/public/causal_explorer/ 

 

3.4 KS 
 

The Koller-Sahami algorithm [20] returns 
a heuristic approximation to the Markov 
Blanket of a target variable). A very fast 
implementation of expected cross entropy 
is used. 

 
3 Algorithms 
 
In this section, we describe the algorithms 
in Causal Explorer. All algorithms 
currently support three statistical tests of 
independence (or measures of association 
depending on context): G2 and thresholded 
mutual information for multinomial 
distributions, and Fisher’s z-test for 
multivariate Gaussian distributions [3]. In 
most cases this extends the functionality of 
the algorithms from their original 
published form. 

 

3.5 LCD2 
 

The LCD2 algorithm [25] is a partial 
induction algorithm that requires 
knowledge of one or more instrumental 
variables (i.e., variables that have no 
parents within the studied set of variables).   
 

3.6. GS 
 

The Grow-Shrink algorithm returns the 
Markov Blanket of a variable [27]. 
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3.7 IAMB (Iterative Associative Markov 
Blanket) 
 

IAMB [19] is a novel algorithm that 
returns the Markov Blanket of a variable.  
 

3.8-3.10 IAMBnPC, InterIAMB, 
interIAMBnPC 
 

These are novel algorithms that return the 
Markov Blanket of a variable  and either 
use the PC algorithm or interleaved 
pruning to reduce the number of returned 
false positives relative to IAMB (trading 
off sample for speed) [28]. 
 

3.11 pchIAMB 
 

A novel parallel version of IAMB suitable 
for multiple-CPU machines running Unix.   
 
4 General Guidelines and Context 
of Use 
 
The algorithms in Causal Explorer can be 
used in several different experimental 
tasks and contexts: (a) to gain insight in 
the causal structure of the studied domain; 
(b) to locate promising variables for 
subsequent experimentation or detailed 
modeling (e.g., by detailed measurements 
and fitting PDEs). (c) To derive a provably 
optimal minimal set of predictors for 
classification purposes.  
    In general, global algorithms (PC, 
TPDA, SCA) will be most helpful when 
the number of variables is up to a few 
hundred and the connectivity (i.e., number 
of direct causes/effects around variables) 
of the generating process is uniformly 
small.  
    Local algorithms will be most helpful 
when the number of variables is very 
large, or when the connectivity around the 
target variables is small (relative to 
available sample) while around other 
variables it may be large.  
    In particular, when the sample is large 
relative to the size of the Markov Blanket 

of the target variables (as a rule of thumb 
when several hundred samples are 
available for Markov Blankets with ~ 10 
variables), GS and the IAMB variants will 
return excellent results. When the sample 
is smaller, KS and LCD2 can be applied to 
provide an approximation to the Markov 
Blanket or a subset of the global network, 
respectively.  
 
5 Discussion 
 
CPNs are powerful mathematical 
formalisms that are useful for variable 
selection, dimentionality reduction, causal 
hypothesis generation, and automatic 
creation of predictive/classification tools 
and decision support systems. 
Unfortunately the complexity of most 
related algorithms prevents many 
researchers from employing them in 
experiments since proper implementation 
often requires extensive familiarity with 
CPN theory and a substantial investment 
of resources for proper coding and testing. 
In addition, the existing code in the public 
domain typically comes in stand-alone 
executable form, and contains hard-coded 
limitations in input data size.  
    The first contribution of the present 
work is therefore that it makes available 
many state-of-the-art algorithms to 
biomedical researchers in a form that can 
be directly used for computational 
experiments. The toolkit also offers 
extensions by adding statistical tests that 
will be useful when the corresponding 
distributional assumptions hold. The 
second contribution is that the toolkit 
makes available to the research community 
for the first time, a suite of novel 
algorithms especially designed for coping 
efficiently and reliably with thousands of 
variables. These algorithms have been 
recently tested with a variety of datasets 
[28], however at this stage the potential of 
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these methods is practically untapped. It is 
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by the broader biomedical research 
community.  
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