
Int J Softw Tools Technol Transfer (2008) 10:455–471
DOI 10.1007/s10009-008-0083-0

REGULAR CONTRIBUTION

FTSyn: a framework for automatic synthesis of fault-tolerance

Ali Ebnenasir · Sandeep S. Kulkarni · Anish Arora

Published online: 31 July 2008
© Springer-Verlag 2008

Abstract In this paper, we present a software framework
for adding fault-tolerance to existing finite-state programs.
The input to our framework is a fault-intolerant program and
a class of faults that perturbs the program. The output of
our framework is a fault-tolerant version of the input pro-
gram. Our framework provides (1) the first automated tool
for the synthesis of fault-tolerant distributed programs, and
(2) an extensible platform for researchers to develop a repo-
sitory of heuristics that deal with the complexity of adding
fault-tolerance to distributed programs. We also present a set
of heuristics for polynomial-time addition of fault-tolerance
to distributed programs. We have used this framework for
automated synthesis of several fault-tolerant programs inclu-
ding a simplified version of an aircraft altitude switch, token
ring, Byzantine agreement, and agreement in the presence of
Byzantine and fail-stop faults. These examples illustrate that
our framework can be used for synthesizing programs that
tolerate different types of faults (process restarts, Byzantine
and fail-stop) and programs that are subject to multiple faults
(Byzantine and fail-stop) simultaneously. We have found our
framework to be highly useful for pedagogical purposes,
especially for teaching concepts of fault-tolerance, automatic
program transformation, and the effect of heuristics.

A. Ebnenasir
Computer Science Department, Michigan Technological
University, Houghton, MI 49931, USA
e-mail: aebnenas@mtu.edu

S. S. Kulkarni (B)
Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824, USA
e-mail: sandeep@cse.msu.edu

A. Arora
Department of Computer Science and Engineering,
Ohio State University, Columbus, OH 43210, USA
e-mail: anish@cse.ohio-state.edu

Keywords Fault-tolerance · Automatic addition
of fault-tolerance · Formal methods · Program synthesis ·
Distributed programs

1 Introduction

In the initial design of a fault-tolerant program, it is often
difficult to identify all the faults that may perturb the program.
Thus, when new faults that affect an existing program are
identified, it becomes necessary to upgrade the system to
deal with those new faults. Moreover, during such addition of
fault-tolerance, it is necessary to reuse the existing program
as much as possible. Specifically, when the new fault does
not occur, we expect the program to behave in the same way
as it behaved before the upgrade.

It is desirable to use an automated synthesis algorithm
while adding fault-tolerance to a program as the synthesized
program is correct by construction, and there will be no need
for its proof of correctness. To automatically synthesize a
fault-tolerant program, we can begin either with its formal
specification [6–9,19], or with (the transitions of) the fault-
intolerant version thereof [27,28]. In the context where we
need to upgrade an existing program, we follow the latter
approach and reuse the existing program.

One of the difficulties in automating the addition of fault-
tolerance to distributed programs is the complexity of such
addition. In [27,31], the authors have shown that, in gene-
ral, the addition of fault-tolerance to distributed programs
is NP-complete in the state space of the fault-intolerant
program. To deal with this complexity and to synthesize
programs that have large state space, heuristic-based appro-
aches are proposed in [21,28,29]. These heuristic-based
approaches reduce the complexity of synthesis by forfeiting
the completeness of adding fault-tolerance (see Sect. 4 for

123

456 A. Ebnenasir et al.

the description of heuristics). In other words, if heuristics
are applicable then a heuristic-based algorithm will gene-
rate a fault-tolerant program in polynomial-time (in the state
space of the fault-intolerant program). However, if the heuris-
tics are not applicable then the algorithm may declare failure
even though it is possible to add fault-tolerance to the given
fault-intolerant program.

The development and the application of heuristics is com-
plicated by the fact that, for a given set of heuristics, we
need to determine which combinations of those heuristics
are applicable in the synthesis of a fault-tolerant program. In
[28], Kulkarni et al. apply their heuristics for the synthesis of
a canonical version of Byzantine agreement program by care-
ful exploration of reachable states and transitions. However,
for programs with very large state space, such manual explo-
ration of state space is not practical. This problem becomes
even more challenging where a combination of heuristics
fails to be applicable in the synthesis of a fault-tolerant pro-
gram and developers need to determine what went wrong
during the synthesis. To address such questions, an extensible
software tool is necessary where we provide (1) the ability
to apply different combinations of a set of heuristics; (2) the
ability to add new heuristics, and (3) the ability for automatic
generation of meaningful representation of the cases where
the addition of fault-tolerance fails.
Goals. To address the above-mentioned issues, we deve-
lop a software framework, called Fault-Tolerance Synthe-
sizer (FTSyn), for the synthesis of fault-tolerant programs
from their fault-intolerant version. FTSyn has the following
properties:

1. Ability to add fault-tolerance to existing fault-intolerant
programs. One group of users who use FTSyn are the
developers of fault-tolerant programs. For this group of
users, FTSyn should provide mechanisms for the addi-
tion of fault-tolerance. Thus, at different stages in the
synthesis of a fault-tolerant program, these developers
should be able to interact with FTSyn in order to apply
different built-in heuristics (in their desired order) depen-
ding on the program being synthesized.
In the cases where the application of heuristics fails,
developers should be able to determine the cause of fai-
lure. In other words, they should be able to query FTSyn
to obtain meaningful representations for the failure cases.
Towards this end, they must be able to automatically
generate the intermediate versions of the program being
synthesized, and automatically identify counterexamples
of desired fault-tolerance properties. This way, they can
determine the heuristics that should be applied next.

2. Ability to add new heuristics. Another group of users
are the developers of heuristics who need to evaluate
the applicability of their new heuristics in reducing

the complexity of fault-tolerance addition. In order to
increase the efficiency of synthesis, the developers of
heuristics may need to improve the existing heuristics or
add new heuristics for different tasks during synthesis.
Thus, FTSyn should allow improvements or additions of
heuristics with a low overhead. In other words, FTSyn
should be extensible.

3. Ability to change internal representations. The internal
representation of entities such as programs and faults
affects the efficiency of the synthesis of fault-tolerant
programs. It is difficult to determine the ideal internal
representation of these entities as each representation has
its own advantages and disadvantages. Moreover, depen-
ding on the user requirements at run-time, FTSyn should
switch between different internal representations of a
particular entity. Hence, we should be able to modify the
way these entities are represented with a low overhead.

Contributions of the paper. The main contributions of the
paper are as follows:

– We extend the scope of program synthesis by designing
and implementing an extensible software framework, cal-
led FTSyn, for adding fault-tolerance to existing distri-
buted programs.

– We provide the possibility of changing the internal repre-
sentation of different entities in FTSyn. Towards this end,
we effectively utilize some of the design patterns in [20].
We note that the identification of appropriate implemen-
tation structures for programs, faults, and specifications
is a research problem that is outside the scope of this
paper. Nonetheless, we provide the necessary software
framework for such investigation.

– We provide the option of obtaining an intermediate ver-
sion of the synthesized program in Promela [2] modeling
language; this option is especially useful if the heuris-
tics being used fail, and it becomes necessary to analyze
the intermediate version of the synthesized program to
identify if another heuristic could be used or how a new
heuristic can be developed.

– We note that FTSyn provides a suitable platform for tea-
ching some basic concepts of distributed and fault-tolerant
systems (e.g., distribution issues, non-determinism, faults,
and fault tolerance); i.e., FTSyn is used for pedagogical
purposes as well.

We have used FTSyn to synthesize several fault-tolerant
programs among them (1) a simplified version of an alti-
tude switch that tolerates the corruption of altitude sensors;
(2) a token ring protocol that tolerates process-restart faults;
(3) an agreement protocol that tolerates Byzantine faults; (4)
an agreement program that tolerates both Byzantine faults

123

FTSyn: a framework for automatic synthesis of fault-tolerance 457

and fail-stop faults; (5) an alternating bit protocol program
that tolerates message-loss faults, and (6) a Triple Modular
Redundancy program that tolerates input-corruption faults.
These examples illustrate the potential of FTSyn in adding
tolerance against faults of different natures (e.g., input-
corruption, Byzantine, message loss, etc.).
Organization of the paper. In Sect. 2, we present preliminary
concepts. Then, in Sect. 3, we provide an overview of how
developers of fault-tolerance can interact with FTSyn to add
fault-tolerance to programs. We also use an example program
to demonstrate the input and the output of FTSyn. Subse-
quently, in Sect. 4, we present the theory behind the inter-
nal working of FTSyn, where we present heuristics applied
during synthesis. In Sect. 5, we show how one can integrate
new heuristics in FTSyn and can change the internal repre-
sentation of the components of FTSyn. In Sect. 6, we present
a simplified version of an altitude switch synthesized using
FTSyn. We discuss scalability issues related to our frame-
work in Sect. 7. We make concluding remarks and discuss
future work in Sect. 8. We note that a detailed user manual
including the source code of FTSyn is available in [1].

2 Preliminaries

In this section, we present the theoretical background on
which FTSyn is based. We present basic concepts in Sect. 2.1
and then, in Sect. 2.2, we recall the problem statement of
adding fault-tolerance to programs. Finally, in Sect. 2.3, we
represent a non-deterministic algorithm from [27,28] for
adding fault-tolerance to distributed programs.

2.1 Basic concepts

In this section, we give the definitions of programs, problem
specifications, state predicates, faults, and fault-tolerance.
The programs are defined in terms of their state space and
their transitions. The definition of specifications is adapted
from Alpern and Schneider [3]. The definition of faults and
fault-tolerance is adapted from Arora and Gouda [4] and
Kulkarni [26]. The issues of modeling distributed programs
are adapted from Kulkarni and Arora [27], and Attie and
Emerson [7].
Program. A program p is defined by a finite set of variables,
say V = {v1, . . . , vu}, and a finite set of processes, say
P = {P1, . . . , Pn}, where u and n are positive integers. Each
variable is associated with a finite domain of values. Let
v1, v2, . . . , vu be variables of p, and let D1, D2, . . . , Du

be their respective domains. A state of p is obtained by
assigning each variable a value from its respective domain.
Thus, a state s of p has the form: 〈l1, l2, . . . , lu〉 where
∀i : 1 ≤ i ≤ u : li ∈ Di . The state space of p, Sp,
is the set of all possible states of p.

A process, say Pj (1 ≤ j ≤ n), in p is associated with
a set of program variables, say r j , that Pj can read and a
set of variables, say w j , that Pj can write. We assume that
w j ⊆ r j , i.e., Pj cannot blindly write any variable. Process
Pj consists of a set of transitions δ j ; each transition is of
the form (s0, s1) where s0, s1 ∈ Sp. Later in this section, we
address the effect of read/write restrictions on δ j . The set of
transitions of p, δp, is equal to the union of the transitions of
its processes.

A state predicate of p is any subset of Sp. A state pre-
dicate S is closed in the program p (respectively, δp) iff (if
and only if) the following condition holds:

∀s0, s1 :: (((s0, s1)∈δp) ∧ (s0 ∈ S)) ⇒ (s1 ∈ S).

A sequence of states, σ = 〈s0, s1, . . .〉 with len(σ) states,
is a computation of p iff the following two conditions are
satisfied: (1) ∀ j : 0 < j < len(σ) : (s j−1, s j) ∈ δp and (2)
if σ is finite and terminates in a state sl then there does not
exist a state s such that (sl , s) ∈ δp (note that len(σ) could
be infinity). A finite sequence of states, 〈s0, s1, . . . , sk〉, is a
computation prefix of p iff ∀ j : 0 < j ≤ k : (s j−1, s j) ∈
δp , where k is a positive integer.

The projection of program p on a state predicate S, deno-
ted as p|S, is the set of transitions {(s0, s1) : (s0, s1)∈δp ∧
s0, s1 ∈ S}; i.e., p|S consists of the transitions of p that start
in S and end in S.
Notation. When it is clear from the context, we use p and δp

interchangeably. We say that a state predicate S is true in a
state s iff s ∈ S.
Specification. A specification is a set of infinite sequences
of states that is suffix-closed and fusion-closed. Suffix clo-
sure of a set means that if a state sequence σ is in that set then
so are all the suffixes of σ . Fusion closure of a set means
that if state sequences 〈α, s, γ 〉 and 〈β, s, δ〉 are in that set
then so are the state sequences 〈α, s, δ〉 and 〈β, s, γ 〉, where
α and β are finite prefixes of state sequences, γ and δ are
suffixes of state sequences, and s is a program state.

Following Alpern and Schneider [3], we rewrite a specifi-
cation as a conjunction of a safety specification and a live-
ness specification. Since the specification is suffix-closed
and fusion-closed, it is possible to represent the safety spe-
cification of a program as a set of bad transitions that the
program is not allowed to execute (see P. 26, Lemma 3.6
of [26] for proof). Thus, for program p, its safety specifi-
cation is a subset of Sp × Sp. We do not explicitly specify
the liveness specification as we show that the fault-tolerant
program satisfies the liveness specification (in the absence of
faults) iff the fault-intolerant program satisfies the liveness
specification.

Given a program p, a state predicate S, and a specification
spec, we say that p satisfies spec from S iff (1) S is closed in
p, and (2) every computation of p that starts in a state where
S is true is in spec. If p satisfies spec from S and S 	={}, we

123

458 A. Ebnenasir et al.

say that S is an invariant of p for spec. For a finite sequence
(of states) α, we say that α maintains (does not violate)
spec iff there exists an infinite sequence of states β such that
αβ ∈ spec. We say that p maintains (does not violate)
spec from S iff (1) S is closed in p, and (2) every computation
prefix of p that starts in a state in S maintains spec. Note
that the definition of maintains focuses on finite sequences
of states, whereas the definition of satisfies concentrates on
infinite sequences of states. Since a specification is a set of
infinite sequences of states, if p satisfies spec from S then all
computations of p that start in S must be infinite. However, p
may deadlock if it starts in a state that is not in S. Moreover,
notice that p is allowed to contain a self-loop of the form
(s0, s0) inside its invariant S; i.e., it is permissible for p to
reach s0 and remain there forever.
Notation. Let spec be a specification. We use the term safety
of spec to mean the smallest safety specification that includes
spec. Whenever the specification is clear from the context,
we will omit it; thus, S is an invariant of p abbreviates S is
an invariant of p for spec.
Distribution model. We identify how read/write restrictions
on a process affect its transitions. Given a transition (s0, s1),
it is straightforward to determine the variables that need to be
changed in order to transition from state s0 to s1. Specifically,
if x(s0) denotes the value of x in state s0 and x(s1) denotes the
value of x in state s1 then we say that (s0, s1) writes the value
of x iff x(s0) 	= x(s1). Thus, the write restrictions amount to
ensuring that the transitions of a process only modify those
variables that it can write. More specifically, if process Pj

can only write the variables in w j and the value of a variable
other than that in w j is changed in the transition (s0, s1) then
(s0, s1) cannot be used in obtaining the transitions of Pj . In
other words, if Pj can write only the variables in w j then
Pj cannot use the transitions in nw(w j), where nw(w j) =
{(s0, s1) : (∃x : x 	∈w j : x(s0) 	= x(s1))}.

Read restrictions require us to group transitions and ensure
that the entire group is included or the entire group is exclu-
ded (the idea of grouping has also appeared in previous work
[7,27]). As an example, consider a program consisting of
variables a and b and let their domain be {0, 1}. Moreover,
consider a process that cannot read the variable a. We can
think of the transition from the state 〈a = 0, b = 0〉 to the
state 〈a = 0, b = 1〉 as an atomic if statement ‘if a is 0 and
b is 0 then set b to 1’. In this case, the process must read
a. However, if we also include the transition from the state
〈a = 1, b = 0〉 to the state 〈a = 1, b = 1〉 then these two
transitions can be thought of as ‘if b is 0 then set b to 1’. In
other words, the inability to read causes the transitions (〈a =
0, b = 0〉, 〈a = 0, b = 1〉) and (〈a = 1, b = 0〉, 〈a = 1, b = 1〉)
to be grouped. In the set of transitions of a process, we need
to include all transitions in this group or exclude all of them.

More generally, consider the case where r j is the set of
variables that Pj can read, w j is the set of variables that Pj

can write, and w j ⊆ r j . Process Pj can include the transition
(s0, s1) iff Pj also includes the transition (s′

0, s′
1) where s0

(respectively, s1) and s′
0 (respectively, s′

1) are identical as
far as the variables in r j are concerned, and s0 (respecti-
vely, s′

0) and s1 (respectively, s′
1) are identical as far as the

variables not in r j are considered. We define these transitions
as group(r j)(s0,s1) for the case w j ⊆ r j , where

group(r j)(s0,s1) = {(s′
0, s′

1) :
(∀x : x ∈r j : x(s0)= x(s′

0) ∧ x(s1)= x(s′
1)) ∧

(∀x : x 	∈r j : x(s′
0) = x(s′

1) ∧ x(s0) = x(s1)) }

The grouping introduced by the read restrictions increases
the complexity of synthesizing distributed programs [27,31].
To clarify this, we consider the case where transitions (s0, s1)

and (s′
0, s′

1) are grouped together, (s0, s1) is a desirable tran-
sition (e.g., because it is used to satisfy the specification in
the absence of faults), and (s′

0, s′
1) should never be executed

(e.g., because it violates the safety specification). In this sce-
nario, we are faced with two choices (1) include this group
and ensure that s′

0 is never reached, or (2) exclude this group
and lose the useful transition (s0, s1). Thus, we need to per-
form a tradeoff between states and transitions. The authors
of [27] have used this crucial fact to show that adding fault-
tolerance to distributed programs is NP-hard. One approach
to deal with such exponential complexity is to design heu-
ristics that deterministically identify which transition (res-
pectively, state) can be included in the fault-tolerant program
(see Sect. 4 for examples of such heuristics).
Faults. We systematically represent the faults that a program
is subject to by a set of transitions. Thus, a class of fault f
for program p is a subset of the set Sp × Sp. We use p[] f
to denote the transitions obtained by taking the union of the
transitions in p and the transitions in f . We say that a state
predicate T is an f -span (read as fault-span) of p from S
iff the following two conditions are satisfied: (1) S ⊆ T
(equivalently, S ⇒ T), and (2) T is closed in p[] f . Thus,
at each state where an invariant S of p is true, an f -span T
of p from S is also true. The state predicate T , similar to S,
is closed in p. Moreover, if any transition in f is executed
in a state where T is true, then T is also true in the resulting
state. It follows that for all computations of p that start at
states where S is true, T is a boundary in the state space of
p to which (but not beyond which) the state of p may be
perturbed by the occurrence of the transitions in f .

As we defined a computation of p, we say that a sequence
of states, σ = 〈s0, s1, . . .〉 with len(σ) states, is a computa-
tion of p in the presence of f iff the following three condi-
tions are satisfied: (1) ∀ j : 0 < j < len(σ) : (s j−1, s j) ∈
(δp ∪ f), (2) if σ is finite and terminates in state sl then there
does not exist state s such that (sl , s)∈ δp, and (3) ∃n : n ≥
0 : (∀ j : j > n : (s j−1, s j)∈ δp). The first requirement cap-
tures that in each step, either a program transition or a fault

123

FTSyn: a framework for automatic synthesis of fault-tolerance 459

transition is executed. The second requirement captures that
faults do not have to execute, i.e., if the program reaches
a state where only a fault transition can be executed, it is
not required that the fault transition be executed. It follows
that fault transitions cannot be used to deal with deadlocked
states. Finally, the third requirement captures that the number
of fault occurrences in a computation is finite. Such require-
ment also appears in previous work [4,5,13,34] in order to
ensure that eventually recovery can occur.
Fault-tolerance. We say that p is masking f -tolerant to
spec from S iff the following two conditions hold: (1) in the
absence of f , p satisfies spec from S, and (2) there exists T
such that (a) T is an f -span of p from S, (b) p[] f maintains
spec from T , and (c) every computation of p[] f that starts
from a state in T has a state in S.

2.2 Problem statement for addition of fault-tolerance

For a given class of faults f , the objective of the addition of
fault-tolerance to an existing fault-intolerant program p is to
ensure no new behaviors are added in the absence of f and to
add the necessary fault-tolerance behaviors in the presence
of f . Let S be an invariant of p from where p satisfies its
specification spec. Also, let p′ be the program derived by
adding fault-tolerance to p and let S′ be the invariant of p′.
If S′ includes states that are not in S then, in the absence
of faults, the computations of p′ may reach such states and
generate new ways for satisfying spec. Also, a similar case
will occur if p′ | S′ includes transitions that do not belong
to p | S′. Hence, we require that S′ ⊆ S and p′|S′ ⊆ p|S′.
Thus, the problem of fault-tolerance addition is defined as
follows (from [27]):

The Addition Problem
Given p, S, spec and f such that p satisfies spec from S,
Identify p′ and S′ such that

S′ ⊆ S,
p′|S′ ⊆ p|S′, and
p′ is masking f -tolerant to spec from S′.

2.3 Non-deterministic synthesis algorithm for distributed
programs

Kulkarni and Arora [27] show that the addition of masking
fault-tolerance to distributed programs is NP-complete (in
program state space). They present a non-deterministic poly-
nomial algorithm in [27,28] for the addition of fault-tolerance
to distributed programs. We repeat this algorithm in Fig. 1
since the implementation of FTSyn is based on a determinis-
tic version of this algorithm.

The Add_ f t algorithm (see Fig. 1) first computes a set of
states, denoted ms (i.e., marked states), from where safety
can be violated by the execution of fault transitions alone.
Thus, the fault-tolerant program should not reach a state in
ms. Then, it computes a set of transitions, denoted mt (i.e.,
marked transitions), that violate safety or reach a state in
ms. It follows that a fault-tolerant program should not exe-
cute a transition in mt . Then, the Add_ f t algorithm non-
deterministically guesses the fault-tolerant program, p′, its
invariant, S′ and its fault-span, T ′. Finally, the algorithm veri-
fies that the guessed fault-tolerant program satisfies the three
conditions of the addition problem (see Sect. 2.2). This goal
is achieved by verifying the six formulas F1–F6.

3 FTSyn overview

In this subsection, we explain how developers of fault-
tolerance should prepare the input to FTSyn and how FTSyn
provides the output to its users. The input of FTSyn consists
of the fault-intolerant program, its invariant, its safety speci-
fication, its initial states, and a class of faults (see Fig. 2).

Fig. 1 The non-deterministic algorithm for automatic addition of fault-tolerance to distributed programs

123

460 A. Ebnenasir et al.

Fig. 2 Deterministic execution of FTSyn

We represent the input fault-intolerant program by Dijks-
tra’s guarded commands [14]. A guarded command (action)
is of the form grd → st , where grd is a state predicate
and st is a statement that updates the program variables. The
guarded command grd → st includes all program transi-
tions {(s0, s1) : grd holds at s0 and the atomic execution of
st at s0 takes the program to state s1}. In other words, we use
guarded commands as a shorthand for representing the set of
program transitions. The output of FTSyn is also represented
by guarded commands (see Fig. 2).

We note that there exist automated techniques (e.g., [23,
24]) by which one can transform fault-intolerant programs
written in common programming languages to the guarded
commands language. Moreover, after the synthesis of a fault-
tolerant program, there exist tolerance-preserving techniques
(e.g., [12,22,33]) that allow us to refine the structure of the
synthesized fault-tolerant program (represented in guarded
commands).

3.1 Token ring program

In this section, we demonstrate the addition of fault-tolerance
to a simple example of a token ring program to illustrate the
way developers can communicate with FTSyn to add fault-
tolerance. Our goal in this section is to provide an overall
picture about the input/output of FTSyn.

The fault-intolerant token ring program consists of four
processes P0, P1, P2, and P3 arranged in a ring. Each process
Pi , 0 ≤ i ≤ 3, has a variable xi with the domain {−1, 0, 1}.
We say that process Pi , 1 ≤ i ≤ 3, has the token if and

only if (xi 	= xi−1) and fault transitions have not corrupted
Pi and Pi−1. Process P0 has the token if (x3 = x0) and
fault transitions have not corrupted P0 and P3. Process Pi ,
1 ≤ i ≤ 3, copies xi−1 to xi if the value of xi is different from
xi−1. This action propagates the token to the next process. If
(x0 = x3) holds then process P0 copies the value of (x3 ⊕ 1)

to x0, where ⊕ denotes addition in modulo 2. Thus, if we
initialize every xi , 0 ≤ i ≤ 3, with 0 then process P0 has the
token and the token circulates along the ring. In the input file
of FTSyn, we specify the actions of P0 as follows (keywords
are shown in italic):

1 process P0
2 begin
3 (x0 == x3) -> x0 = ((x3+1)%2);
4 read x0, x3;
5 write x0;
6 end

While in the input of FTSyn we specify P1, P2, and P3

separately, for the ease of presentation, we present their
actions in a parameterized format as follows (1 ≤ i ≤ 3).

1 process Pi
2 begin
3 (xi != x(i-1)) -> xi = x(i-1);
4 read xi, x(i-1);
5 write xi;
6 end

Read/write restrictions. Each process Pi , 1 ≤ i ≤ 3, is
only allowed to read xi−1 and xi , and is allowed to write xi .
Process P0 is allowed to read x3 and x0, and to write x0. We
specify the read/write restrictions of a process by read and
write keywords inside the body of the process (see Lines 4
and 5 in the body of Pi).

123

FTSyn: a framework for automatic synthesis of fault-tolerance 461

Faults. Faults are also modeled as a set of guarded com-
mands that change the values of program variables. In the
case of the token ring program, faults may corrupt at most
three processes. In this example, faults are detectable in that a
process that is corrupted can detect if it is in a corrupted state.
Hence, we model the fault at process Pi by setting xi = −1.
Thus, one of the fault actions that corrupts x0 is represented
as follows:

1 fault TokenCorruption
2 begin
3 (((x0!=-1)&&(x1!=-1)) || ((x0!=-1)&&(x2!=-1)) ||
4 ((x0!=-1)&&(x3!=-1)) || ((x1!=-1)&&(x2!=-1)) ||
5 ((x1!=-1)&&(x3!=-1)) || ((x2!=-1)&&(x3!=-1)))
6 -> x0 = -1;
7 end

The above fault action stipulates that faults may occur
if there exist at least two uncorrupted processes. Note that
there exist no read/write restrictions for the fault transitions
because we assume that fault transitions can read and write
arbitrary program variables.
Safety specification. The safety specification of the fault-
intolerant program is represented as a Boolean expression
over program variables. In the token ring program, the safety
specification stipulates that no non-faulty process is allowed
to copy a corrupted value from its predecessor. Note that,
in this example, only program transitions may violate safety
after faults perturb the state of the program. In the input of
FTSyn, we represent the safety specification as follows.

1 (((x1s!=-1)&&(x1d==-1))||((x2s!=-1)&&(x2d==-1))||
2 ((x3s!=-1)&&(x3d==-1))||((x3s==-1)&&(x0s!=x0d)))

Note that we have added a suffix “s” (respectively, suffix
“d”) to variable names that stands for source (respectively,
destination). Since the above condition specifies the set of
transitions tspec using their source and destination states, we
need to distinguish between the value of a specific variable
xi in the source state of tspec (i.e., xis denotes the value of
xi in the source state of tspec) and in the destination state of
tspec (i.e., xid denotes the value of xi in the destination state
of tspec).
Invariant. The invariant is also specified as a Boolean expres-
sion over program variables. The invariant of the token ring
program consists of the states where no process is corrupted
and there exists only one token in the ring.

1 invariant
2 ((x0==1)&&(x1==0)&&(x2==0)&&(x3==0)) ||
3 ((x0==1)&&(x1==1)&&(x2==0)&&(x3==0)) ||
4 ((x0==1)&&(x1==1)&&(x2==1)&&(x3==0)) ||
5 ((x0==1)&&(x1==1)&&(x2==1)&&(x3==1)) ||
6 ((x0==0)&&(x1==0)&&(x2==0)&&(x3==0)) ||
7 ((x0==0)&&(x1==0)&&(x2==0)&&(x3==1)) ||
8 ((x0==0)&&(x1==0)&&(x2==1)&&(x3==1)) ||
9 ((x0==0)&&(x1==1)&&(x2==1)&&(x3==1))

Initial states. We also specify some initial states in the input
of FTSyn. While these initial states are included in the inva-
riant of the fault-intolerant program, we find that explicitly
listing them assists in adding fault-tolerance. The initial states
of the token ring program are as follows (init and state are
keywords):

1 init
2 state x0 = 0; x1 = 0; x2 = 0; x3 = 0;
3 state x0 = 1; x1 = 1; x2 = 1; x3 = 1;

The output fault-tolerant program. The output of FTSyn
is also generated in guarded commands. For the token ring
program, the actions of process P0 in the synthesized fault-
tolerant program are as follows:

1 (x0==-1) && (x3==1) -> x0 := 0;
2 |
3 (x0==1) && (x3==1) -> x0 := 0;
4 |
5 (x0==0) && (x3==0) -> x0 := 1;
6 |
7 (x0==-1) && (x3==0) -> x0 := 1;

The above actions mean that P0 can copy the value of
(x3 ⊕ 1) to x0 as long as x3 	= −1. We present the actions of
other processes in a parameterized format.

1 (xi==1) && (x(i-1)==0) -> xi := 0;
2 |
3 (xi==-1) && (x(i-1)==0) -> xi := 0;
4 |
5 (xi==0) && (x(i-1)==1) -> xi := 1;
6 |
7 (xi==-1) && (x(i-1)==1) -> xi := 1;

The above actions state that each process Pi , for
1 ≤ i ≤ 3, can copy the value of xi−1 to xi if ((xi−1 	= −1)∧
(xi 	= xi−1)) holds (i.e., Pi−1 is not corrupted). We would
like to note that the token ring program that we have automa-
tically synthesized using FTSyn is the same as the program
that was manually designed in [26].

3.2 User interactions

Although FTSyn can automatically synthesize a fault-tolerant
program without user intervention, there are some situations
where (1) user intervention can help to speed up the synthesis
of fault-tolerant programs, or (2) a fully automatic approach
fails. In this subsection, we present the nature of the interac-
tions that fault-tolerance developers can have with FTSyn.

FTSyn permits developers to semi-automatically super-
vise the synthesis procedure. In such supervised synthesis,
fault-tolerance developers interact with FTSyn and apply
their insights during the synthesis. In order to achieve this
goal, we have devised some interaction points (see Fig. 2)
where the developers can stop the synthesis algorithm and
query it.

At each interaction point, the users can make the following
kinds of queries: (1) apply a specific heuristic for a particu-
lar task; (2) apply some heuristics in a particular order; (3)

123

462 A. Ebnenasir et al.

view the incoming program (respectively, fault) transitions
to a particular state; (4) view the outgoing program (respec-
tively, fault) transitions from a particular state; (5) check the
membership of a particular state (respectively, transition) to
a specific set of states (respectively, set of transitions); e.g.,
check the membership of a given state s in the set of ms
states, and finally (6) view the intermediate representation
of the program that is being synthesized. Since the goal of
the paper is to focus on the technical details of FTSyn and
its application in adding fault-tolerance, we omit the details
about the user interface of FTSyn. We refer the reader to the
tutorial about using FTSyn in [1].

While we expect that the queries included in this version
will be sufficient for a large class of programs, we also pro-
vide an alternative for the cases where the heuristics fail and
these queries are insufficient. Specifically, in such cases, the
users of FTSyn need to determine what went wrong during
synthesis. The answer to this question is very difficult without
the help of automated techniques, especially for programs
with large state space. To address this issue, developers of
fault-tolerance can obtain the corresponding intermediate
program in Promela modeling language [2]. This program
can then be checked by the SPIN model checker to deter-
mine the exact scenario where the intermediate program does
not provide the required fault-tolerance property. The coun-
terexamples generated by SPIN help the users to identify
the appropriate heuristics that should be applied in the sub-
sequent steps of synthesis.

4 Theoretical background

In this section, we present the underlying theory behind
FTSyn. Specifically, we present a set of heuristics integrated
in FTSyn (see Fig. 2). We demonstrate how we employ such
heuristics while adding fault-tolerance to distributed pro-
grams. We use the token ring program introduced in Sect. 3
as a running example throughout this section.

Recall that in the discussion about read restrictions in
Sect. 2.1, we argued that while synthesizing distributed fault-
tolerant programs, we are faced with the following choice:
either ensure that (1) some state, say s′

0, is not reached, or
(2) some transition, say (s0, s1), is not included in the fault-
tolerant program. To make the suitable choice, we develop
a set of heuristics by considering whether (1) the transition
being excluded is in the fault-intolerant program, (2) the state
being excluded is in the invariant of the fault-intolerant pro-
gram, or (3) recovery is possible from the state that is to be
excluded. By default, we prefer to exclude a transition (and
its corresponding group) over excluding a state. This is due
to the fact that if we choose to exclude a state, we need to
exclude all transitions that reach that state. We also consider
the invariant states to be valuable, i.e., every attempt is made

to ensure that a state in the invariant of the fault-intolerant
program is not excluded. Based on these preferences, we
develop four heuristics, and use them in our synthesis algo-
rithm.

The synthesis algorithm implemented in FTSyn comprises
eight steps organized in four fractions (see Fig. 2), namely
initialize, preserve invariant, modify invariant, and resolve
cycles. The first fraction, as in Add_ f t , computes ms and
mt respectively (see fraction (I) in Fig. 2). The remaining
steps proceed to identify the fault-tolerant program, p′, its
invariant, S′, and its fault-span, T ′, so that formulae F1–F6
(see Fig. 1) are true. Specifically, all steps ensure that F1 is
always true. The third step in Fig. 2 computes a new fault-
span and ensures that the formula F2 is true. The fourth
step then removes transitions and/or states from the fault-
span computed in Step 3 so that formula F3 becomes true.
Since Step 4 may violate F2, we redo Steps 3 and 4. When
no progress is made in the last repetition of Steps 3–4, we
continue to Step 5 where we deal with deadlock states that are
outside S′ (also, to prevent an infinite loop, we keep an upper
bound on how often each iteration may continue). After Step
5, we repeat Steps 3–5 to re-satisfy F2 and F3. Throughout
Steps 3–5, we do not modify the invariant (see fraction (II)
in Fig. 2). This requirement is based on the premise that
states in the invariant are valuable and should not be removed
prematurely. When there is no progress from Steps 3–5, we
continue to Step 6 where we recalculate the invariant while
ensuring that F5 stays true (i.e., the invariant is closed). In
Step 7, we deal with states in S′ where F4 is false (i.e.,
deadlock states). Finally, in Step 8, we deal with cases where
formula F6 is false (i.e., non-progress cycles). The eight steps
of our algorithm are as follows:
Step 1. Identifying a set of states from where execution of
faults alone can violate safety. Consider a transition (s0, s1),
which is a fault transition and violates safety. We must ensure
that the fault-tolerant program never reaches state s0. Also,
in this scenario, if (s−1, s0) is a fault transition then we must
ensure that the program never reaches s−1. Hence, we iden-
tify the set of states, ms (i.e., marked states), from where
execution of one or more fault actions violate safety.

Application in the token ring program. In the case
of the token ring program, safety is violated when a process
propagates a corrupted value from its predecessor. Thus, fault
transitions do not directly violate safety, and as a result, the
set of ms states is empty.
Step 2. Identifying a set of transitions that should not be
executed by the program. A transition that violates safety
cannot be executed in the fault-tolerant program. Moreover,
if a transition reaches a state in ms (from where faults alone
may violate safety) then that transition should not be inclu-
ded either. Hence, we identify the set of transitions, mt (i.e.,
marked transitions), that should not be executed in the fault-
tolerant program.

123

FTSyn: a framework for automatic synthesis of fault-tolerance 463

Application in the token ring program. Since ms is
empty for the token ring program, the set of mt transitions
is equal to the set of program transitions that directly violate
safety. Let 〈x0, x1, x2, x3〉 denote a state of the token ring
program. Then, as an example, the transition that process P1

takes from state b = 〈−1, 0, 0, 0〉 to c = 〈−1,−1, 0, 0〉
violates the safety of specification. Thus, (b, c) belongs to
the set of mt transitions.

Heuristic 1: A transition that starts in a state in ms
may be used by the fault-tolerant program.

Reasoning behind Heuristic 1. If (s′
0, s′

1) is a transition such
that s′

0 ∈ ms, then (s′
0, s′

1) may be included in the transitions
of the fault-tolerant program. This heuristic is based on the
premise that the synthesis algorithm will ensure that state s′

0
will never be reached. This heuristic is useful when (s′

0, s′
1)

is grouped with some other transition that is desirable in the
fault-tolerant program (thus, in the scenario discussed at the
start of the section, we can choose to include the group that
contains (s′

0, s′
1) and ensure that state s′

0 is not reached).
Application in the token ring program. Since ms is

empty for the token ring program, Heuristic 1 is not appli-
cable for this program.
Step 3. Identifying the fault-span of the fault-intolerant pro-
gram. In order to determine the fault-span of the fault-
intolerant program, we identify the set of reachable states
by the computations of the fault-intolerant program in the
presence of faults. Such computations start in a state in the
invariant of the fault-intolerant program and may reach states
outside the invariant by a mixture of fault and program tran-
sitions.

Application in the token ring program. The state space
of the token ring program presented in Sect. 3.1 includes
81 states. For example, starting from an invariant state a =
〈0, 0, 0, 0〉, fault transitions may perturb the program to b =
〈−1, 0, 0, 0〉, where process P0 is corrupted. From b, process
P1 copies the corrupted value and the fault-intolerant pro-
gram reaches state c = 〈−1,−1, 0, 0〉. Thus, starting from
the invariant, a combination of program and fault transitions
can take the state of the program to any possible state in the
whole state space. Therefore, for the token ring program, its
fault-span is equal to its entire state space with 81 states.

Heuristic 2: If a transition (s0, s1) is in mt and s0 is
not reached in the computations – that start in a state
in the invariant – of the fault-intolerant program in the
presence of faults, then (s0, s1) may be included in the
fault-tolerant program.

Application in the token ring program. Since the fault-
span of the token ring program is equal to its state space, all
states are reachable.

Step 4. Identifying transitions in the fault- intolerant program
that may be included in the fault-tolerant program. Beginning
with the fault-tolerant program that consists of no transitions,
we use the following heuristic to include the groups of the
fault-tolerant program.

Heuristic 3: A transition can be included in the fault-
tolerant program if it is not in mt or if it is permitted
by Heuristics 1 and/or 2. A group can be included only
if all its transitions can be included.

In order to ensure that F1 also remains true in Step 4, if we
add a transition that originates from the invariant, we ensure
that the resulting state is also in the invariant. During the first
iteration of Step 4, this is straightforward as the invariant of
the fault-intolerant program is closed in the fault-intolerant
program. However, this check is done explicitly after the
invariant is recalculated in Steps 6–7.
Reasoning behind Step 4 and Heuristic 3. We use this
heuristic to determine how long the fault-intolerant program
can continue safely even if faults occur. By ensuring that
states in ms and transitions in mt are removed, we ensure
that F3 becomes true.

Application in the token ring program. In the case of the
token ring program, we must exclude all mt transitions; i.e.,
the set of program transitions that directly violate safety. Such
transitions are those during which an uncorrupted process
copies the corrupted value of its predecessor. After remo-
ving such transitions (and their corresponding group), we
include the remaining transitions in the fault-tolerant pro-
gram. For example, the group associated with the transition
(b, c), where b = 〈−1, 0, 0, 0〉 and c = 〈−1,−1, 0, 0〉,
contains nine transitions 〈−1, 0, y, z〉 → 〈−1,−1, y, z〉,
where −1 ≤ y, z ≤ 1, that must be excluded from the set of
transitions of the fault-tolerant program. Note that since in
the source states of these nine transitions at least one process
(i.e., P0) is corrupted, none of these transitions starts in the
invariant.
Repeat Steps 3 and 4. After completing Step 4, we recal-
culate the fault-span with the revised program to determine
if any additional transitions of the fault-intolerant program
may be included. This repetition can proceed until there are
no more changes. If there are no changes in Steps 3-4 then
F2 and F3 have become true.

Application in the token ring program. Since in the
token ring program faults can at most corrupt three processes,
all the incoming transitions to the state 〈−1,−1,−1,−1〉 are
program transitions that violate safety. Since such transitions
will not be included in the fault-tolerant program, the new
fault-span of the token ring program does not include state
〈−1,−1,−1,−1〉. Also, the removal of safety-violating
transitions causes 16 other states to become unreachable:
〈−1, 1, 0, 1〉, 〈−1, 0, 1, 0〉, 〈0, 1,−1, 0〉, 〈1, 0,−1, 1〉, 〈0, 1,

123

464 A. Ebnenasir et al.

0, y〉, 〈0, y, 1, 0〉, 〈1, y, 0, 1〉, and 〈1, 0, 1, y〉, where −1 ≤
y ≤ 1. Thus, the recalculated fault-span includes 64 states.
Step 5. Resolving deadlocks. State sd is deadlocked if there
is no program transition that originates in sd . Note that such
states cause violation of formula F4. If sd is in the invariant
of the fault-intolerant program and sd is a deadlocked state
in the fault-intolerant program then in this step we ignore
the deadlock at sd . We deal with remaining deadlocks states
(in the fault-span, outside the invariant) using the following
heuristic.

Heuristic 4: Given a deadlocked state sd that does not
belong to the invariant, either include a recovery tran-
sition from sd to an invariant state, or make sd unrea-
chable from the invariant without eliminating any inva-
riant states.
(Step 5.1) If it is possible to add a transition from sd

to a state in the invariant (i.e., single-step recovery)
then we add such a transition. Note that in distributed
programs, we must add the group corresponding to that
transition. We require that the added group satisfies
the following two conditions: (1) no transition in that
group is in mt (except as permitted by Heuristics 1-
3), and (2) if any transition in that group originates
in the invariant of the fault-intolerant program, then
it satisfies the second condition of the transformation
problem, i.e., that transition is a transition of the fault-
intolerant program.
(Step 5.2) If such a (recovery) group cannot be added,
we consider whether sd can be reached from the inva-
riant with the execution of faults alone.

If yes (Step 5.2.1), we leave sd as is.
If no (Step 5.2.2), we ensure that the fault-tolerant
program does not reach sd by removing some pro-
gram transitions.

Reasoning behind Step 5 and Heuristic 4. The above heuris-
tic is based on the principle that we would not like to eliminate
any states and/or transitions unless absolutely required to do
so. Hence, if we can recover from a state then we keep that
state in the fault-span of the fault-tolerant program. If it is
not possible to recover from sd , and sd can be reached by
execution of faults alone from a state in the invariant then
we allow sd to be included temporarily. This is due to the
fact that if we were to require that sd is not reached then
we would have to eliminate the corresponding state(s) from
the invariant. We, however, consider states in the invariant of
the fault-intolerant program to be valuable as the invariant
of the fault-tolerant program is a subset of the invariant of
the fault-intolerant program. If we prematurely eliminate the
states in the invariant of the fault-intolerant program, then it
may prevent us from obtaining a fault-tolerant program.

However, if a deadlocked state sd cannot be reached due to
fault transitions alone then it implies that some program tran-
sition, say t , must be executed before sd is reached. Hence,
we could prevent the fault-tolerant program from reaching
the deadlocked state by removing t . Hence, we attempt to
eliminate t , i.e, we ensure that state sd is never reached.
Towards this end, we consider transitions of the form (s′, sd).
If (s′, sd) is a fault transition, we ensure that state s′ is never
reached. This is due to the fact that if state s′ is reached
then state sd can be reached by the execution of the fault. If
(s′, sd) is a program transition obtained in Step 4, we may
choose to ensure that (1) (s′, sd) is not included in the fault-
tolerant program, or (2) state s′ is never reached. Following
the principle that states are more valuable than transitions,
we remove the transition (s′, sd) from consideration in the
fault-tolerant program. However, if the removal of such tran-
sitions (and their associated group) causes some state, say
s0, to be a deadlocked state, we follow the second approach;
i.e., we include the transitions originating from state s0 and
attempt to ensure that state s0 is never reached. During this
algorithm, if we encounter a state that can be reached from a
state in the invariant by execution of faults alone, we do not
pursue further elimination. Such states will be considered
later in Step 6. Thus, the algorithm to eliminate a state sd is
as follows: (We let S to be the invariant of the fault-intolerant
program and p to be the set of transitions obtained in
Step 4.)

Application in the token ring program. To synthesize a
fault-tolerant token ring program, in Step 5, we identify dead-
lock states created due to removing mt transitions. Recall that
since ms is empty, mt only includes program transitions that
directly violate safety. For example, after we remove the tran-
sition (b, c), where b = 〈−1, 0, 0, 0〉 and c=〈−1,−1, 0, 0〉,
state b becomes a deadlock state. In the case of the token ring
program, since no mt transitions (and their grouped transi-
tions) originate in the invariant, removing mt transitions does
not create any deadlock state inside the invariant. Thus, all
deadlock states are outside the invariant of the token ring
program.

In Step 5 (see fraction (II) in Fig. 2), the synthesis algo-
rithm adds single-step recovery transitions from deadlock
states to the invariant by allowing a corrupted process to
copy an uncorrupted value from its predecessor. For example,
from state 〈0,−1, 0, 0〉, process P1 can copy the value of x0,
and as a result, the program recovers to the state 〈0, 0, 0, 0〉
inside its invariant. However, such addition of single-step
recovery transitions is not possible from states where more
than one process is corrupted (e.g., 〈0,−1, 0,−1〉). Such
states are directly reachable from the invariant by fault tran-
sitions alone. Thus, the synthesis algorithm fails to eliminate
such states in Step 5.
Repeat Step 3–5. After the completion of Step 5, we repeat
Steps 3–5. Let pr be the revised program obtained from Steps

123

FTSyn: a framework for automatic synthesis of fault-tolerance 465

Fig. 3 Making deadlock states
unreachable without removing
invariant states

4 and 5. In Step 3, we use the transitions of pr to identify the
fault-span. However, while computing the fault-span, we do
not explore states that were not eliminated in Step 5.2.2 (if we
explore these states, we will get the same deadlocked states
which we were trying to eliminate in Step 5.2.2). Then, in
Step 4, we consider transitions of pr that can still be used. We
also determine if transitions from the original fault-intolerant
program can be added; this may occur if the fault-span
recalculated in Step 3 is different. Subsequently, we resolve
the deadlocks as mentioned in Step 5. While repeating Step
5, additional recovery transitions could be added due to the
revised fault-span. We continue this until a fixpoint is rea-
ched (alternatively, we could stop after certain iterations and
continue to Step 6).

Application in the token ring program. Repeating Steps
3–5 will not change the fault-span recalculated in repeating
Steps 3 and 4 right after Step 4. Thus, with a fault-span that
includes some unresolved deadlock states, the synthesis algo-
rithm moves to Step 6.
Step 6. Removing states from the invariant. Steps 3–5 ensure
that no state in the invariant is removed. More specifically, if
s0 is a state in the invariant then the execution of faults alone
from state s0 can cause the program to reach state sd , where sd

is a deadlock state and no recovery is possible from sd . Thus,
the synthesis algorithm simply quits in Step 5.2.1. Likewise,
Step 5.2.2 also quits if it encounters a state whose elimination
would require the elimination of a state in the invariant. For
both these situations, we remove the offending states from
the invariant in this step. Note that by removing states thus,
the revised invariant of the fault-tolerant program will be a
subset of the invariant of the fault-intolerant program.
Reasoning behind Step 6. Since repetitions of Steps 3–5
have reached a fixpoint, all deadlocked states fall in category
5.2.1 or 5.2.2. This suggests that there are some offending
states in the invariant which should not be in the invariant of
the fault-tolerant program.

Application in the token ring program. At this step, the
fault-span of the token ring program contains a set of states
D1 with only one corrupted process in which a single-step
recovery has already been included in Step 5, and a set of
deadlock states D2 (with more than one corrupted processes

in each state) whose states are reachable from the invariant
directly by a sequence of fault transitions. Thus, to make
the deadlock states D2 unreachable, the synthesis algorithm
needs to remove all invariant states.
Step 7. Recalculating the invariant. After Step 6, we recalcu-
late the new invariant for the fault-tolerant program. In Step 6,
we may have eliminated some state(s) in the invariant. We
use the following program to recalculate the invariant.

ConstructInvariant(S : state predicate, p : transitions)
// Returns a subset of S such that computations of p
// within that subset are infinite

{ while (∃s0 : s0 ∈ S : (∀s1 : s1 ∈ S : (s0, s1) 	∈ p))

S := S − {s0} }

ConstructInvariant eliminates the state s0 from S if there
is no transition of the form (s0, s1) such that (s0, s1) is a
transition of p and s1 is in S (i.e., s0 is a deadlock state).
Step 6 can produce such state s0 if it eliminates the state s1.
After computing the invariant using ConstructInvariant, we
recalculate the program transitions to ensure that the revised
invariant is closed in the program. Towards this end, if the
program obtained in Step 6 contains a transition of the form
(s0, s1) where s0 is in the revised invariant but s1 is not in
the revised invariant then we remove the transition (s0, s1)

(and the group associated with it). With the revised program,
there may be new deadlock states created within the invariant.
Hence, we apply ConstructInvariant again with the revised
program. We continue this until the revised invariant is closed
in the program transitions or the revised invariant is empty.
In the latter case, we declare that synthesis fails.

Application in the token ring program. Since the algo-
rithm removes all states in the invariant of the token ring
program, the resulting invariant will be empty. Thus, the
synthesis fails in this step. In Sect. 5, we present a heu-
ristic for adding multiple-step recovery that results in syn-
thesizing the fault-tolerant token ring program presented in
Sect. 3.1.
Repeat Steps 3–7. After completing Step 7, we redo Steps
3–7, i.e., with this reduced invariant, we compute the new
fault-span. Then, we decide which transitions of the fault-
intolerant program may be used in Step 4. Since the synthesis

123

466 A. Ebnenasir et al.

of the token ring program failed in Step 7, this case is not
applicable for this program.
Step 8. Removing cycles. Let p′ be the program obtained
after repetitions of Steps 3–7, let S′ be its invariant, and let
T ′ be its fault-span. In Step 8, we consider cycles of the
form 〈s0, s1, . . . , s0〉 where s0 	∈ S′ and s0 ∈ T ′. We need
to remove such cycles; otherwise the computation of p′ can
remain in these states forever. For this reason, we arbitrarily
drop one transition (and the corresponding group) from this
cycle.
Repeat Steps 3–8. If the program obtained after Step 8 does
not satisfy the formulas in Add_ f t , we repeat Steps 3–8 with
the program obtained in Step 8. If after some predetermined
number of iterations, a fault-tolerant program is not found,
our algorithm declares failure in finding a fault-tolerant pro-
gram.
Comment on the heuristics. Since the problem of adding
fault-tolerance to distributed programs is NP-complete [27,
31] (in the state space of the fault-intolerant program), we
cannot design a sound and complete polynomial-time synthe-
sis algorithm unless P = N P . Thus, although the heuristics
that we have presented in this section are sound (i.e., if they
result in the synthesis of a fault-tolerant program then the
synthesized program meets the requirements of the addition
problem), they may fail to synthesize a fault-tolerant program
in some cases (e.g., the single-step recovery heuristic presen-
ted in Step 5.1 failed to synthesize a masking fault-tolerant
token ring program). As a result, there is a well-defined need
for a repository of heuristics available to developers of fault-
tolerance that can be extended by developers of heuristics.
In Sect. 5.1, we show how we provide an extensible design
for FTSyn to achieve this goal.

5 An extensible and changeable design for FTSyn

In this section, we first give an overview of the design of
FTSyn. Then, in Sect. 5.1, we show how developers can
extend the design of FTSyn by adding new heuristics. Sub-
sequently, in Sect. 5.2, we illustrate how one can change the
implementation of the components of FTSyn without a signi-
ficant overhead. Additional details of the design of FTSyn
that may be of interest to users interested in extending FTSyn
are included in [1].

In the conceptual (object-oriented) design of FTSyn, we
model each one of the entities (i.e., Program, Process,
Fault, SafetySpecification, Invariant, and InitialStates)
involved in the problem of adding fault-tolerance as a class.
Using the initial states and program/fault transitions, we
generate the fault-span of the fault-intolerant program as a
set of reachable states; i.e., the reachability graph of the
fault-intolerant program. Hence, we regard the fault-span of
the fault-intolerant program as an input entity and we model

it as a class in the design of FTSyn. After taking the input
entities, FTSyn instantiates an object corresponding to each
one of the design classes. Subsequently, FTSyn executes the
synthesis algorithm on the reachability graph of the fault-
intolerant program to generate a reachability graph of the
fault-tolerant program. The output entities (i.e., fault-tolerant
program and its invariant) are also instances of the existing
classes in the design of FTSyn. Next, we demonstrate how
one can integrate new heuristics into the design of FTSyn.

5.1 Extending FTSyn: illustration of integrating new
heuristics for resolving deadlocks

In this section, we illustrate how we have developed two new
heuristics for adding recovery from deadlock states, and have
integrated these new heuristics in FTSyn.
Heuristic 5: Adding multi-step recovery. The Step 5.1 of
Heuristic 4 (presented in Sect. 4) only adds single-step reco-
very from deadlock states to the invariant. As a result, it
fails in cases where single-step recovery is not possible. For
example, Heuristic 4 failed to add recovery to states where
there is more than one corrupted process (e.g., 〈0,−1,−1,−1〉)
in the token ring program. The idea behind our new heuristic
is that we provide recovery from a deadlock state, say s′

d , via
another deadlock state, say sd , from where we have already
added a recovery transition.

Likewise Heuristic 4, Heuristic 5 also consists of two
passes. In the first pass, we conduct a fixpoint computation
that searches through the deadlock states outside the inva-
riant in the fault-span. In the first iteration of the fixpoint
computation, we find all deadlock states from where
single-step recovery to the invariant is possible. In the second
iteration, we find all deadlock states from where single-step
recovery is possible to recovery states explored in the pre-
vious iteration. Continuing thus, we reach an iteration of the
fixpoint computation where either no more deadlock states
exist or no more recovery is possible. In the latter case, we
choose to deal with the remaining deadlock states in the
second pass. In the former case, at the end of the fixpoint
computation, we will have a set of states, RecoveryStates,
from where there exists a multi-step recovery path to the
invariant (notice that adding a recovery transition in a dis-
tributed program requires the satisfaction of the grouping
requirements).

In the second pass, we try to remove sd if sd is directly
reachable by fault transitions from the invariant and no reco-
very can be added from sd . If the removal of sd requires the
removal of one or more invariant states then we remove those
offending invariant states. During deadlock resolution, if the
invariant becomes empty then we declare that the synthesis
algorithm failed to synthesize a fault-tolerant program.

Application in the token ring program. Heuristic 4 adds
recovery to states where there is only one corrupted process;

123

FTSyn: a framework for automatic synthesis of fault-tolerance 467

e.g., d = 〈0, 0, 0,−1〉. Using our new heuristic, we add
recovery from states where there exist exactly two corrup-
ted processes, e.g., e = 〈0, 0,−1,−1〉, to states where there
exists only one corrupted process. Likewise, we add reco-
very from states where there exist exactly three corrupted
processes, e.g., g = 〈0,−1,−1,−1〉, to states where there
exist exactly two corrupted processes. In this case, a recovery
from the state g to the invariant contains three steps where
(1) P1 corrects itself by copying the value of x0 and reaching
state e; (2) P2 corrects itself by copying the value of x1 and
reaching state d, and (3) P3 corrects itself by copying the
value of x2 and reaching the invariant state 〈0, 0, 0, 0〉.

In order to provide extensibility in FTSyn, we employ a
set of design patterns [20] in the object-oriented design of
FTSyn. For example, we have applied the Strategy design
pattern [20] to the DeadlockResolver method of the Rea-
chabilityGraph class in the design of FTSyn that implements
deadlock resolution schemes. The application of the Stra-
tegy pattern to this method allows us to easily extend the
design of FTSyn upon developing new heuristics for adding
recovery to deadlock states. We have integrated the above
heuristic in FTSyn without any changes in the existing design
of FTSyn. Using this new heuristic, we have automatically
synthesized the masking fault-tolerant token ring program
presented in Sect. 3.1.
Heuristic 6: The strategy of Heuristic 6 is similar to that in
Heuristic 5, except that the domain of the fixpoint computa-
tion includes all the states outside the invariant in the fault-
span (i.e., (T ′ − S′)) instead of just resolved deadlock states.
In other words, Heuristic 6 is more general than Heuristic 5
(likewise, Heuristic 5 is more general than Heuristic 4). We
have also used Heuristic 6 for enhancing the fault-tolerance
of nonmasking programs to masking fault-tolerance [29],
where a nonmasking program only guarantees recovery to the
invariant, but does not guarantee safety during recovery. The
integration of Heuristic 6 was fairly simple. We integrated
Heuristic 6 as an alternative strategy of deadlock resolution
in the DeadlockResolver method.
The application of heuristics. The Heuristic 5 suffices for
the synthesis of the fault-tolerant token ring program presen-
ted in Sect. 3.1. However, in the synthesis of an agreement
protocol in the presence of arbitrary faults [32], we applied
Heuristic 6 since Heuristic 5 failed (see [1]). Given a parti-
cular problem, the developers can either use their insight to
choose the appropriate heuristic or they can rely on FTSyn
to make that choice. The former choice provides more effi-
ciency whereas the latter choice allows more automation.

5.2 Changing the Implementation of FTSyn

As we mentioned in the Introduction, it is difficult to deter-
mine a priori the internal representation that one should use
for different components of FTSyn, namely Program, Fault,

Specification, and Invariant, involved in the synthesis of
fault-tolerant programs. Thus, it is necessary to provide the
ability to modify the internal representation of these com-
ponents while reusing the remaining parts of FTSyn. In fact,
there are situations where one needs to use one internal repre-
sentation while executing in one fraction of FTSyn (see
Fig. 2), and a different internal representation for the same
component while executing in another fraction of FTSyn.

In the conceptual design of FTSyn, we consider a class
SafetySpecification that models the safety specification of
programs. We have two different implementations for the
class SafetySpecification: (1) linked-list, and (2) symbolic.
The linked-list implementation contains a list of elements
where each element represents a set of safety-violating tran-
sitions. Thus, during synthesis, to verify the safety of an
individual transition t , we traverse the linked-list to verify
the membership of t to the set of safety-violating transitions.
The symbolic implementation directly uses the specification
predicates that represent the safety specification in the input
of FTSyn (for an example, see Sect. 6 or 3.1). Afterwards,
the symbolic implementation substitutes the values of pro-
gram variables at the source and the destination of t in the
specification predicate to verify the safeness of t .
Reasoning about a query. The symbolic implementation
helps to improve the efficiency of the synthesis when we need
to automatically synthesize a fault-tolerant program without
any user intervention. Specifically, the symbolic implemen-
tation reduces the problem of checking the safety of a transi-
tion to an instance of the satisfiability problem, where only a
yes/no answer is provided. However, when users interact with
FTSyn, they may need to know why and how a transition vio-
lates the safety specification. To fulfill users’ requirements,
in the symbolic implementation, we can only provide the
values of program variables in the source and target states of
the safety-violating transitions, which are difficult to inter-
pret. On the other hand, in the SafetySpecification linked-
list, different scenarios of violating safety specification are
represented as different sets of transitions. Thus, the linked-
list structure can provide a better intuition as to why a particu-
lar transition violates safety. Therefore, to provide reasoning
about the violation of safety, FTSyn switches the implemen-
tation of the SafetySpecification class from the symbolic
to the linked-list structure.

6 Example: altitude switch controller

In this section, we demonstrate how we used FTSyn to syn-
thesize a simplified version of an altitude switch (ASW) used
in aircraft altitude controller. We have adapted this example
from [10] and the output program of FTSyn is the same as the
fault-tolerant program that is manually designed in [10]. This
example illustrates the applicability of FTSyn in automatic
synthesis of practical applications.

123

468 A. Ebnenasir et al.

The fault-intolerant altitude switch (ASW). The ASW pro-
gram monitors a set of input variables and generates an out-
put. There exist four internal variables, a mode variable that
determines the operating mode of the program, and four input
variables that represent the state of the altitude sensors. The
internal variables are as follows: (1) Alt Below is equal to 1
if the altitude is below a specific threshold, otherwise, it is
equal to 0; (2) Actuator Status is equal to 1 if the actuator is
powered on, otherwise, it is equal to 0; (3) I nhibi t is equal
to 1 when the actuator power-on is inhibited, otherwise, it is
equal to 0, and (4) Reset is equal to 0 if the system is being
reset.

The ASW program can be in three different modes: (1)
the Initialization mode when the ASW system is initializing;
(2) the Await-Actuator mode if the system is waiting for the
actuator to power on, and (3) the Standby mode. We use
an integer variable Status to represent the system modes in
the program where (1) Status = −1 if the system is in the
initialization mode; (2) Status = 0 if the system is in
the Await-Actuator mode, and (3) Status = 1 if the system
is in the Standby mode.

Moreover, we model the signals that come from the input
(analog and digital) altitude sensors to indicate the occur-
rence of faults using the following variables: (1) Alt Fail is
equal to 1 when altitude sensors are failed; (2) if the system
fails in the Initialization mode then the variable I ni t Failed
will be set to 1, otherwise, I ni t Failed remains 0; (3) if the
altitude sensors fail (i.e., Alt Fail = 1) and do not recover in
a certain number of built-in reset attempts then the variable
Alt Fail Over will be equal to 1, otherwise, Alt Fail Over
remains 0, and (4) if the Actuator fails in the Await-Actuator
mode then the variable Await Over will be equal to 1, other-
wise, Await Over remains 0.

The output of the ASW program is identified based on
the system mode. The ASW program has an output integer
variable Wakeup Actuator that is equal to 1 if the system is
in the Await-Actuator mode and is equal to 0 otherwise. The
domain of all variables except Status is equal to {0, 1}.

The fault-intolerant program consists of only one pro-
cess, called Controller. In the input of FTSyn, we specify
the Controller process as follows:

1 process Controller
2 begin
3

4 ((Status == -1) && (InitFailed == 0))
5 ->Status = 1;
6 |
7 ((Status == 1) && (Reset == 0))
8 -> Status = -1; Reset = 1;
9 |

10 ((Status == 1) && (AltBelow == 0) &&
11 (Inhibit == 0) && (ActuatorStatus ==0))
12 -> Status = 0; AltBelow = 1;
13 |

14 ((Status == 0) && (ActuatorStatus == 0))
15 -> Status = 1;
16 ActuatorStatus = 1;
17 |
18 ((Status == 0) && (Reset == 0))
19 -> Status = -1; Reset = 1;
20

21 read AltBelow, ActuatorStatus, Inhibit, Reset,
22 AltFail, InitFailed, AltFailOver,
23 AwaitOver, WakeupActuator, Status;
24

25 write WakeupActuator, AltBelow, ActuatorStatus,
26 Inhibit, Reset, Status;
27 end

The ASW program changes its mode from Initialization to
Standby. The program transitions to the Initialization mode
when it is either in Standby or in Await-Actuator mode and
the reset signal is received. If the program is in the Standby
mode, the altitude is not below a pre-determined threshold,
the actuator power-on is not inhibited and the actuator is not
powered on, then the program goes to Await-Actuator mode.
In the Await-Actuator mode, the program either powers on
the actuator and goes to the standby mode, or transitions to
the Initialization mode upon receiving the reset signal.
Read/Write restrictions. The Controller process can read all
program variables and can write only a subset of variables.
Faults. The malfunction of the altitude sensors may perturb
the state of the program to a faulty state. We introduce a new
mode, where Status = 2, that represents the system is in a
faulty state. We represent the fault actions as follows:

1 fault Malfunction
2 begin
3

4 (InitFailed == 1) -> InitFailed = 0;
5 Status = 2;
6 |
7 (AltFailOver == 1) -> AltFailOver = 0;
8 Status = 2;
9 |

10 (AwaitOver == 1) -> AwaitOver = 0;
11 Status = 2;
12

13 end

Note that the guards of the above actions represent condi-
tions under which the program detects the occurrence of
faults and switches to the faulty mode. We could have added
the following actions to the list of fault actions to model the
effect of faults.

1 (InitFailed == 0) -> InitFailed = 1;
2 |
3 (AltFailOver == 0) -> AltFailOver = 1;
4 |
5 (AwaitOver == 0) -> AwaitOver = 1;

The above actions perturb the program to states where at
least one of the variables I ni t Failed, Alt Fail Over , and
Await Over is equal to one; i.e., shows the occurrence of

123

FTSyn: a framework for automatic synthesis of fault-tolerance 469

faults. Since in this case there exist only two values 0 and 1
in the domain of these variables, we have adopted a simpler
approach where we set the values of these variables to 1 in
the initial states of the program. In this example, the structure
of the synthesized fault-tolerant program remains the same.
Safety specification. The problem specification requires that
the program does not change its mode from Standby to Await-
Actuator if the altitude sensors are failed; i.e., Alt Fail is
equal to 1. Also, from the faulty state, the program can only
go to the Initialization mode. Moreover, in the faulty state,
the program can recover if it is not reset. In the input file, we
represent the specification as a state predicate.

1

2 ((AltFails == 1) && (Statuss == 1) &&
3 (Statusd == 0)) ||
4 ((Statuss == 2) &&
5 ((Statusd == 1) || (Statusd == -1))) ||
6 ((Statuss == 2) && (Resets == 0))

As we described in subsect. 3.1, to distinguish the value of
a variable (e.g., Alt Fail) at the source of a transition from its
value at the destination, we append the variable names with
suffixes ‘s’ and ‘d’ (e.g., Alt Fails and Alt Faild).
Invariant. The invariant of the program consists of the states
where the program is not in the faulty state; i.e., Status 	= 2.
We specify the invariant as follows:

1 invariant
2

3(Status != 2)

Initial states. We specify the initial state as follows:

1 init
2

3 state
4 WakeupActuator = 0;
5 AltBelow = 1;
6 ActuatorStatus = 0;
7 Inhibit = 0;
8 Reset = 0;
9 AltFail = 0;

10 InitFailed = 1;
11 AwaitOver = 1;
12 AltFailOver = 1;
13 Status = -1;

Fault-tolerant program. FTSyn automatically generates the
following fault-tolerant program (Bold fonts represent the
code updates). We present the actions of the Controller pro-
cess as follows:

1 ((Status == -1) && (InitFailed == 0))
2 -> Status = 1;
3 |
4 ((Status == 1) && (Reset == 0))
5 -> Status = -1; Reset = 1;
6 |
7 ((Status == 1) && (AltBelow == 0) &&
8 (Inhibit == 0) && (ActuatorStatus ==0) &&
9 (AltFail == 0))

10 -> Status = 0; AltBelow = 1;
11 |
12 ((Status == 0) && (ActuatorStatus == 0))
13 -> Status = 1; ActuatorStatus = 1;
14 |
15 ((Status == 0) && (Reset == 0))
16 -> Status = -1; Reset = 1;
17 |
18

19 ((Status == 2) && (Reset == 0))
20 -> Status = -1; Reset = 1;

The fault-tolerant program has a new recovery action (see
Lines 19–20 above), where it recovers to the initialization
mode from faulty state (i.e., states where Status = 2 holds).
Moreover, a new constraint has been added to the third action
(see Line 9) where the program is allowed to change its state
to the Await-Actuator mode only when the input sensors are
not corrupted; i.e., the condition (Alt Fail = 0) holds.

7 Discussion

In this section, we discuss some theoretical, practical, and
pedagogical aspects of FTSyn.
Complexity. In principal, the problem of adding fault tole-
rance to distributed programs is NP-complete in program
state space [27,31]. The complexity of synthesis, however,
can be reduced to polynomial time if we use appropriate
heuristics and the heuristics are applicable. Thus, one of
the important problems in synthesis is to identify heuristics
that will keep the complexity of synthesis manageable. The
FTSyn framework proposed in this paper is especially useful
for testing and developing such heuristics.
Scalability. While the initial version of FTSyn adds fault tole-
rance to small programs (with reachable states in the scale of
a few millions of states), the (space/time) efficiency of FTSyn
is certainly comparable to that of early model checkers. The
largest program that we have synthesized using the initial ver-
sion of FTSyn is an agreement program that is simultaneously
perturbed by Byzantine and fail-stop faults (1.3 millions of
states) [1,30]. To our knowledge, this program is the first
automatically synthesized agreement program that simulta-
neously tolerates both Byzantine and fail-stop faults (see
[1]). Researchers were using early versions of model che-
ckers for checking small protocols and verifying the correct-
ness of operating system kernels [15,25]. The state space of
the models checked in early 90s was approximately 500,000
states [25], which is comparable to our initial results with
FTSyn. We have recently developed a symbolic version [11]
and a distributed version of FTSyn [16] that adds fault tole-
rance to programs that have about 2120 reachable states.

While space and time efficiency of FTSyn are important
issues, other design goals of FTSyn (such as the ability to

123

470 A. Ebnenasir et al.

check the effectiveness of heuristics) are orthogonal to com-
plexity issues. For example, the complexity of determining
whether or not a specific group of transitions violates safety is
independent from the heuristics that determine a set of groups
that should be included in a program so that the program reco-
vers to its invariant. To illustrate this, we have implemented
a SAT-based version of FTSyn where one can either take
advantage of SAT solvers to verify the safety of a group of
transitions [17], or exhaustively verify every transition of a
given group of transitions.
Educational applications. We have used FTSyn in graduate
classes where students used the automated approach to obtain
the fault-tolerant programs that have already been synthe-
sized in FTSyn. Subsequently, they focused on interactive
synthesis of the same fault-tolerant programs. During this
interactive synthesis, they applied different heuristics and
observed the intermediate programs. This allowed them to
evaluate different heuristics.

8 Concluding remarks and future work

In this paper, we presented a software framework, called
Fault-Tolerance Synthesizer (FTSyn), for adding fault-
tolerance to existing fault-intolerant (distributed) programs.
Since the problem of adding fault-tolerance to distributed
programs is NP-complete [27,31] in the state space of the
fault-intolerant program, we presented sound heuristics for
polynomial-time addition of fault-tolerance. In the cases
where heuristics are applicable, FTSyn synthesizes a fault-
tolerant program in polynomial-time using a set of built-in
heuristics that can be used by developers of fault-tolerant
programs to automatically add fault-tolerance. Moreover,
FTSyn is extensible in that developers of heuristics can easily
integrate new heuristics in FTSyn without a significant ove-
rhead.

We demonstrated how one can use FTSyn to automatically
add fault-tolerance to a token ring program that is subject to
process-restart faults, and an altitude switch controller that is
subject to input faults. Several other examples are available at
[1] among which an agreement program that simultaneously
tolerates Byzantine and fail-stop faults. To our knowledge,
this program is the first automatically synthesized distributed
program that simultaneously tolerates Byzantine and fail-
stop faults.

There are several future directions to this work. In [31],
we have identified a class of specifications and programs
for which failsafe fault-tolerance can be added in polyno-
mial time (in the state space of the fault-intolerant program),
where a failsafe fault-tolerant program guarantees to satisfy
its safety specification in the presence of faults. Using the
results of [31], we have developed heuristics that can study
the structure of programs (respectively, specifications) to

determine if these conditions are met [18]. Another extension
of the framework is to take advantage of the structural simi-
larity of the processes [6,8] in order to reduce the complexity
of adding fault-tolerance to a fault-intolerant program.

Acknowledgments We would like to thank Constance Heitmeyer at
Naval Research Laboratory for her comments and suggestions on the
altitude switch example.

References

1. A framework for automatic synthesis of fault-tolerance.
http://www.cse.msu.edu/~sandeep/software/Code/synthesis-
framework/

2. Spin language reference. http://spinroot.com/spin/Man/promela.
html

3. Alpern, B., Schneider, F.B.: Defining liveness. Inform. Process.
Lett. 21, 181–185 (1985)

4. Arora, A., Gouda, M.G.: Closure and convergence: a foun-
dation of fault-tolerant computing. IEEE Trans. Software
Eng. 19(11), 1015–1027 (1993)

5. Arora, A., Kulkarni, S.S.: Designing masking fault-tolerance via
nonmasking fault-tolerance. IEEE Trans. Software Eng. 24(6),
435–450 (1998) (A preliminary version appears in the Proceedings
of the Fourteenth Symposium on Reliable Distributed Systems,
Bad Neuenahr, 174–185, 1995)

6. Attie, P.: Synthesis of large concurrent programs via pairwise
composition. In: CONCUR’99: 10th International Conference on
Concurrency Theory, pp. 130–145 (1999)

7. Attie, P., Emerson, A.: Synthesis of concurrent programs for an
atomic read/write model of computation. ACM TOPLAS (a preli-
minary version of this paper appeared in PODC96) 23(2) (2001)

8. Attie, P., Emerson, E.: Synthesis of concurrent systems with
many similar processes. ACM Trans. Programming Lang.
Syst. 20(1), 51–115 (1998)

9. Attie, P.C., Arora, A., Emerson, E.A.: Synthesis of fault-tolerant
concurrent programs. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS). (A preliminary version of this
paper appeared in PODC 1998.) 26(1), 125 – 185 (2004)

10. Bharadwaj, R., Heitmeyer, C.: Developing high assurance avionics
systems with the SCR requirements method. In: Proceedings of
the 19th Digital Avionics Systems Conference, Philadelphia, PA
(2000)

11. Bonakdarpour, B., Kulkarni, S.S.: Exploiting symbolic techniques
in automated synthesis of distributed programs. In: IEEE Interna-
tional Conference on Distributed Computing Systems, pp. 3–10
(2007)

12. Demirbas, M., Arora, A.: Convergence refinement. In: Internatio-
nal Conference on Distributed Computing Systems, pp. 589–597
(2002)

13. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed
control. Commun. ACM 17(11) (1974)

14. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, NJ, USA (1990)

15. Duval, G., Julliand, J.: Modeling and verification of rubis micro-
kernel with spin. The First SPIN Workshop (1995). Available at
http://spinroot.com/spin/Workshops/ws95/papers.html

16. Ebnenasir, A.: Diconic addition of failsafe fault-tolerance. In: Pro-
ceedings of the 22nd IEEE/ACM international conference on Auto-
mated Software Engineering, pp. 44–53 (2007)

17. Ebnenasir, A., Kulkarni, S.S.: SAT-based synthesis of fault-
tolerance. In: Fast Abstracts of International Conference on Depen-
dable Systems and Networks, Palazzo dei Congressi, Florence,
Italy (2004)

123

http://www.cse.msu.edu/~sandeep/software/Code/synthesis-framework/
http://www.cse.msu.edu/~sandeep/software/Code/synthesis-framework/
http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/Workshops/ws95/papers.html

FTSyn: a framework for automatic synthesis of fault-tolerance 471

18. Ebnenasir, A., Kulkarni, S.S.: Efficient synthesis of failsafe fault-
tolerant distributed programs. Tech. Rep. MSU-CSE-05-13, Com-
puter Science and Engineering, Michigan State University, East
Lansing, MI (2005)

19. Emerson, E., Clarke, E.: Using branching time temporal logic
to synthesize synchronization skeletons. Sci Comput Pro-
gram 2(3), 241–266 (1982)

20. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, USA (1995)

21. Gärtner, F.C., Jhumka, A.: Automating the addition of failsafe fault-
tolerance: Beyond fusion-closed specifications. Formal Techniques
in Real-Time and Fault-Tolerant Systems (FTRTFT), Grenoble,
France, LNCS 3253, pp. 183–198 (2004)

22. Gouda, M., McGuire, T.: Correctness preserving transformations
for network protocol compilers. Prepared for the Workshop on
New Visions for Software Design and Productivity: Research and
Applications (2001)

23. Havelund, K., Pressburger, T.: Model checking java programs
using java pathfinder. Int. J. Software Tools Technol. Transf.
(STTT) 2(4), 366–381 (2000)

24. Holzmann, G.J.: From code to models. In: Proceedings of the
Second International Conference on Application of Concurrency
to System Design (ACSD’01), pp. 3–10 (2001)

25. Joesang, A.: Security protocol verification using spin. The First
SPIN Workshop (1995). Available at http://spinroot.com/spin/
Workshops/ws95/papers.html

26. Kulkarni, S.S.: Component-based design of fault-tolerance. Ph.D.
Thesis, Ohio State University (1999)

27. Kulkarni, S.S., Arora, A.: Automating the addition of fault-
tolerance. In: Proceedings of the 6th International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Systems,
pp. 82–93 (2000)

28. Kulkarni, S.S., Arora, A., Chippada, A.: Polynomial time synthe-
sis of Byzantine agreement. Symposium on Reliable Distributed
Systems, pp. 130–139 (2001)

29. Kulkarni, S.S., Ebnenasir, A.: Enhancing the fault-tolerance of
nonmasking programs. In: Proceedings of the 23rd Internatio-
nal Conference on Distributed Computing Systems, pp. 441–449
(2003)

30. Kulkarni, S.S., Ebnenasir, A.: A framework for automatic syn-
thesis of fault-tolerance. Tech. Rep. MSU-CSE-03-16, Computer
Science and Engineering, Michigan State University, East Lansing
MI 48824, Michigan (2003)

31. Kulkarni, S.S., Ebnenasir, A.: Complexity issues in automated
synthesis of failsafe fault-tolerance. IEEE Trans. Depend. Secure
Comput. 2(3), 201–215 (2005)

32. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals pro-
blem. ACM Trans. Programming Lang. Syst. 4(3), 382–401 (1982)

33. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refi-
nement. J. Parallel Distrib. Comput. 62(5), 766–791 (2002)

34. Varghese, G.: Self-stabilization by local checking and correction.
Ph.D. Thesis, MIT/LCS/TR-583 (1993)

123

http://spinroot.com/spin/Workshops/ws95/papers.html
http://spinroot.com/spin/Workshops/ws95/papers.html

	FTSyn: a framework for automatic synthesis of fault-tolerance
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic concepts
	2.2 Problem statement for addition of fault-tolerance
	2.3 Non-deterministic synthesis algorithm for distributed programs

	3 FTSyn overview
	3.1 Token ring program
	3.2 User interactions

	4 Theoretical background
	5 An extensible and changeable design for FTSyn
	5.1 Extending FTSyn: illustration of integrating new heuristics for resolving deadlocks
	5.2 Changing the Implementation of FTSyn

	6 Example: altitude switch controller
	7 Discussion
	8 Concluding remarks and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

