Fast Branch Misprediction Recovery in Out-of-order
Superscalar Processors

Peng Zhou

Soner Onder

Steve Carr

Department of Computer Science
Michigan Technological University
Houghton, Michigan 49931-1295

{pzhou,soner,carry@mtu.edu

ABSTRACT

Current trends in modern out-of-order processors invoiaple-
menting deeper pipelines and a large instruction windovcloeve
high performance. However, as pipeline depth increasedrdmch
misprediction penalty becomes a critical factor in ovepaticessor
performance. Current approaches to handling branch nd&pre
tions either incrementally roll back to in-order state byiting un-
til the mispredicted branch reaches the head of the reondéerb
or utilize checkpointing at branches for faster recoverylliRg
back to in-order state stalls the pipeline for a significamnber of
cycles and checkpointing is costly.

1. INTRODUCTION

Accurate branch prediction is crucial to the performancenotl-
ern out-of-order processors. As the trend of utilizing dergppelines
to obtain higher clock rates for higher performance corgg)jithe
importance of high branch prediction accuracy magnifiesabse
of the commensurate increase in branch misprediction periie-
vious work has shown that branch mispredictions are thelesing
largest contributor to performance degradation in modenpes
scalar processors [20]. Two options exist for solving thisigbem:
improving prediction accuracy and speeding up the misptioh
recovery process. Improving branch prediction accuragy gl

This paper proposes a fast recovery mechanism, called Eagerstudied problem. In this paper, we examine the other approac

Misprediction Recovery (EMR), to reduce the branch misjred
tion penalty. Upon a misprediction, the processor immetiat
starts fetching and renaming instructions from the compedtt with-
out restoring the map table. Those instructions that adnessrect
speculative values wait until the correct data are restdredever,
instructions that access correct values continue exaguthile re-
covery occurs. Thus, the recovery mechanism hides thedpteh
long branch recovery with useful instructions.

by proposing a novel fast misprediction recovery mechartisat
overlaps the misprediction recovery with the execution séful
instructions, thereby improving performance.

Typically, branch misprediction recovery requires stailithe
front-end of the processor, repairing the architecturatest and
then restarting the process of fetching and renaming icstns
from the correct path. Is stalling the front-end necess&ga the
processor continue fetching and executing instructiorferbere-

EMR achieves a mean performance improvement very close to apairing the architectural state when it detects a mispteticand

recovery mechanism that supports checkpointing at eactthrdn
addition, EMR provides an average of 9.0% and up to 19.9%bett
performance than traditional sequential mispredicticcovery on
the SPEC2000 benchmark suite.

Categories and Subject Descriptors

C.1.1 [Processor Architecture§: Single Data Stream Architec-
tures

General Terms
Design, Performance

Keywords

Branch misprediction, processor state, recovery, chaokpo

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

ICS’05, June 20-22, Boston, MA, USA.

Copyright 2005 ACM 1-59593-167-8/06/200555.00.

41

still maintain the correct program semantics?

To address the above questions, we describe a fast recoeetym
anism, called Eager Misprediction Recovery (EMR), thadvali
instructions accessing correct values to continue exagutihile
forcing instructions that reference incorrect specutatialues to
wait until the correct data are restored. EMR makes threenmai
contributions:

1. EMR provides a mechanism to identify precisely which val-
ues are speculative on a per register basis. It records which
registers are modified after a branch prediction is made, giv
ing the processor fine-grain information on whether a spe-
cific register contains a correct or speculative value.

2. EMR does not stall the front-end when a misprediction oc-
curs. The processor continues fetching instructions ddwen t
correct path seamlessly and allows instructions that acces
only correct values to execute without waiting for all specu
lative values to be repaired.

3. EMR provides a mechanism to force instructions that ref-
erence speculative values to wait until those values are re-
paired. Instead of restoring map table entries to allow s&ce
to the correct value, the correct value is forwarded to the ap
propriate physical register recorded in the map table.

Overall, EMR focuses on incrementally restoring corredtiga to
the registers recorded in the current map table, only wheesie
sary, rather than restoring the map table so that the entoex

to the physical registers where the correct values residés dp-
proach allows EMR to overlap the recovery process with the ex
cution of useful instructions down the correct path, impngviLP.

The remainder of this paper is organized as follows. SeQion
discusses current branch misprediction recovery tecksignd mo-
tivates EMR. Section 3 presents the detailed design of EMR- S
tion 4 details our experimental evaluation, including detbcycle-
accurate simulations. Section 5 discusses related wod<iaally,
Section 6 gives our conclusions.

2. APPROACHES TO BRANCH MISPRE-
DICTION RECOVERY

In order to illustrate the issues in dealing with branch masp
dictions in an out-of-order issue processor that performstrol
speculation, we follow the terminology of in-order, spettive and
architectural states [12]. Implementing correct prograsceition
despite mis-speculations requires a control-speculativeessor to
be aware of these states in such a way that the processorsalsey
the correct state for any externally visible changes in tatations.

R3=..
: In-order State
R7=.. atB

34 s Current Architectural State

b.ranch B_ (Front-end Map Table)

R7=..

Speculative State
R5=...

after B

Speculative Path

b m e |

Bis resoI;ed and misprediction oi:curs
Figure 1: States upon Misprediction

Let us consider Figure 1 which illustrates the in-order,cspe
lative and architectural states at the point of a branch redip-
tion. We define the in-order state as the state that would bega
reached if the program were executed in program order, upgo t
point of interest, and the speculative state as the set aEsggbro-

duced that have not been committed. As should be clear, newer

instructions should use values from the in-order statedfuhlues
have not been modified (i.e., are not part of the speculatate)s
and should use values from the speculative state otherDistn-
ing the architectural state as the union of the in-order getsla-
tive states conveniently describe the set of values to wdighnew
speculatively fetched instruction should reference. Bameple,
in Figure 1 the set of values produced before the mis-sptegla
branch are described as timeorder state at B, the set of speculative
values produced after B is defined as speculative state after B,
and the architectural state at the point of mispredictioteiected
as thecurrent architectural state. Obviously, the in-order state at
B is the same state as the architectural state when the bhetth
been fetched.

Traditionally, there have been two main approaches to imple

menting the correct behavior when employing control spatarh.
The first approach involves mechanisms that rely on takirapsn

shots, orcheckpoints, of the processor state at appropriate points
and reverting back to the corresponding snapshot when aatont

mis-speculation is detected [10]. The second approachvieso
mechanisms that reconstruct the desired state by sediheptia:
cessing the in-flight instructions in program order untilevidtion
from the program order is reached (i.e., the mispredictiragbh is

encountered). Two well known mechanisms employed in the sec

ond approach are the history buffer and the future file meishas

42

We collectively refer to them as state-reconstructing nmedms.

Obviously, a checkpointing processor does not have to wait t
long upon a mis-speculation since a snapshot of the cortatd s
is readily available; however, checkpointing limits thenther of
speculative in-flight branches due to the associated haedeasts.
For example, the MIPS R10000 maintains a branch stack where
each entry contains a complete copy of the integer and figatin
point map tables [22]. At the point of recognizing a mispotioin,
the processor restores the front-end map table from thespond-
ing checkpoint. While checkpointing yields fast recovety,cost
can be prohibitive. Space to store the checkpoints limisnitim-
ber of pending branches that can be in-flight. The MIPS R10000
allows only 4 pending branches to be in-flight since its bhestack
has only 4 entries. Note that a CAM structured map table desig
will require smaller storage than a RAM structured map tdbte
each checkpoint. In a RAM structured design, the total numbe
of entries in the map table is equal to the number of logicgisre
ters, and each entry holds the renamed physical registedeer.

On the other hand, CAM-structured designs use a table intwhic
the total number of entries is equal to the number of physiegl
isters, and each entry keeps the logical register desigmatt a
valid bit to indicate if it is the latest mapping [18]. A chgudint of

a CAM map table needs to copy only the valid bits, which is less
costly than checkpointing in RAM map tables. For example, th
Alpha 21264 [7], which uses the CAM map table, supports up to
80 checkpoints, in essence providing the capability tovecthe
state associated with any of the 80 in-flight instructionfiodgh
checkpointing of CAM map tables is not too expensive, the GAM
structure itself may not scale well since higher degree& Bfwith
increased issue widths require a large number of physigaters.

Itis important to note that the correspondence betweentuhe n
ber of in-flight branches and the number of checkpoint befier
not mandatory. Although the number of checkpoints and brasic
in flight usually match, there has been recent work whichsillu
trates that there may be significant benefits in incorpaogadicon-
fidence mechanism and allowing more branches to be in-fligt t
the storage size dedicated to checkpointing [2, 14].

In contrast to checkpointing, state-reconstructing meismas
can allow an arbitrary number of in-flight branches and, idiad
tion, scale better due to the use of RAM-structured designgor-
tunately, state-reconstructing mechanisms do not imniedgliae-
store the correct state, since that state is not immediatelijable.
The state needs to be reconstructed by processing the li-iftig
structions sequentially (typically through the retireilgg A com-
monly employed mechanism is to use a retirement map taldcal
RMAP [9]. If a RMAP is used, when an instruction retires, it up
dates the retirement map table to indicate that the resyibter is
in the in-order state. The retirement logic ensures thagptkons
occur only if the operation causing the exception is the stideon-
retired operation in the machine [9]. At this point, the methent
state is also the in-order state of this exception point. k\édenis-
prediction occurs, the processor restores the archit@cstate, or
the front-end map table, from the retirement map table.

As can be seen, both approaches have their pros and cons. Al-
though using a RMAP requires only one extra map table, ragove
takes longer than necessary as renaming cannot start Uritil a
structions prior to the mispredicted branch retire. If agdatency
operation prior to the branch existsg., a cache miss, the mispre-
diction penalty increases significantly. Akkaeyal., discuss some
optimizations when using a retirement map table [1, 2]. Elas
timizations walk through the reorder buffer to restore thepnta-
ble without waiting for all prior instructions to retire. Me@ver,
the front-end stalls and instruction processing occursisetiglly,

giving anO(n) complexity wheren is the number of instructions discuss how to restore the correct data to the incorrectubaiice
in-flight. Since more instructions appear in a processohn witarge state to maintain the program'’s correctness.

instruction window, this results in a significant increasehie mis- o - .

prediction penalty. A checkpointing mechanism on the ottaerd 3.1 ldent|fy|ng SpeCU|atlve State

would either have to dedicate a large fraction of the chiadoe The set of all registers that are defined on the speculatitie pa
checkpoint data, or limit the number of in-flight instruats in comprises the speculative state. When the processor slatbranch
essence limiting the amount of instruction level paradiglithat can misprediction, the speculative path consists of the sehstfc-
be exploited. tions from the corresponding branch to the youngest inStman
the pipeline. Any register defined on the speculative patbrigs
mispredeton - mi-tranch etres to the speculative state of this mispredicted branch.

| |
T T t
Architectural State
traditional reconstruct) restart execution
RMAP

t
architectural state

Bi
<\ redirect from the correct path) .
EMR =

execute instructions which access in-order state

update)

t
in-order state execute instructions

which access
speculative state

Bi+1
R7 = ...
Bi+2

K: R8=...

*: speculative state restores the correct data from in-order state

Figure 2: Overlapping Recovery with Useful Instructions

Despite the fact that these mechanisms appear to be digstica
different, checkpointing and state-reconstructing madras share P
a common property. Neither of these mechanisms allows rpsum g . K
tion of the fetching and renaming of new instructions frora tior-
rect path until a known processor state is restored (albeititne
between the detection of the misprediction and resumpt&ngb

SS ={R5, R7, R8}

(a) Speculative State

GBIC

considerably shorter in case of checkpointing). In thisgpawe Frontoond T m'sbpr_r:ntﬂﬁm
explore this opportunity that has not been previously aersid. Map Table DBIT B em
Our approach, EMRallows fetching and renaming instructions Index | S]
immediately upon a branch misprediction and restores the state to ||
the correct states the instruction fetching/renaming continues. In R5| P23 RS NEY
other words, it effectiv_ely hides the state recovery lajgn@ RAM I . T o= =
based map table design. RS P38 RS w2 1= >=

Key to the mechanism is selectively blocking the instrutdio]
which may reference values that are part of the incorrectispe L]
lative state, and allowing those instructions that do natdietinue @ oo Ti000 0000

executing freely. Those blocked instructions can laterdg@acked (b) State Masks
by some micro-architectural mechanism when the correategl
that they need become available, allowing seamless mispicd
handling in an out-of-order issue processor.

In order to better understand the performance potentiahef t
mechanism, let us consider the processor states and thegtihi
the events in misprediction recovery shown in Figure 2. EMR
draws from the observation that the incorrect speculatiatess
only a small part within the architectural state when a nedj-
tion occurs. Our experiments show that on an average, the spe
ulative state makes up about 20% of the architectural stao@ u
a misprediction in the SPEC2000 benchmarks. Moreover,rarou
70% of the subsequent instructions from the correct padreete
the in-order state whereas only 30% of the instructions megd
ister values which have been damaged because of mis-spesula
In other words, a mechanism that employs EMR may need to block
only a small percentage of the instructions from the corpath
while the state reconstruction continues and can hide nfasieo
time spent in reconstructing the correct architecturaksta

Figure 3: Identifying Speculative State

To identify the speculative state, EMR maintains a Globalh
Index Counter (GBIC) for branches and a Dependent Branaixind
Table (DBIT) for logical registers. The GBIC records theémaf
the youngest in-flight branch. When a branch is decoded, BIEG
is incremented by 1 and assigned to it. The DBIT is indexechby t
logical register number, which includes two fields: one ess$pec-
ulative (S) bit; the other is the branch index field. Iniyalall S
bits are reset. When a producer instruction is decoded, ttrertt
GBIC value is copied into the corresponding entry of its ohest
tion in the DBIT, and the S-bit is set. That indicates the idesibn
register is speculative and it is dependent on the curremhgest
branch. When a producer instruction retires, if it is stilétlatest
definition of its logical destination, the correspondindifef the
logical destination register is reset since it is in-ordewrand it
does not depend on any branch. The DBIT can be accessed in par-

3. EAGER MISPREDICTION RECOVERY allel with the front-end map table and therefore it will notiease

In this section, we present the design space of EMR. First, we the cycle time of the decoding stage.

give a technique to identify the speculative state when pradic- When a branch is mispredicted, in the DBIT, those registéiess
tion occurs. Second, we discuss how to handle multiple mispr S-bitis set and the index value is greater than or equal $dotfainch
dictions simultaneously. Third, we provide a mechanismorcd index are defined on its speculative path. They make up thauspe
instructions that access the speculative state to waitalllyinve lative state for the mispredicted branch.

43

The index counter needs lgh bits if the maximum number of
branches allowed to be in-flightlé. Since the counter zeroes when r 1
it overflows, an extra&olor bit is needed to handle the relative order 209 B E Floating-Point Registefs
of branches correctly. Once the counter overflows and zethes
color hit is flipped, from 0 to 1 or from 1 to 0. Each index is
assigned both the counter value and the color bit. When tdioés 209
A and B are compared: A is greater than B if A's value is greater
than B’s and both color bits are the same. Or, A is greater Bian
if A's value is less than B's and their color bits are differe\s
a result, the GBIC and each branch index field in the DBIT need
logoN +1 bits. .

Figure 3 illustrates the speculative state identificatioocpss. »
The speculative state is represented by a mask of registdted SRR &
Speculative State Mask (SSM). Suppose when a misprediation (a) SPEC2000 INT
curs on the brancB;, the brancheB;_ 1 andB;.», and the producer
instructiond, J andK have already been fetched and decoded spec-
ulatively, as shown in Figure 3(a). Figure 3(b) shows thatpto- r 1
cessor generates the SSMByby comparing its indekwith index S B _Floaing ot Regisyr
values in the DBIT entries whose S bits are set. If a regstadex
value is greater than or equalitavith respect to the circular order, I i
then it is in the speculative state set®f and the corresponding 20% fl
bit in the SSM is set. In this examplB5, R7 andR8 comprise the
speculative state set &. They are damaged and not available as
the operands for subsequent instructions until the covadoes are
restored.

The speculative state represents exactly what registecstoee o
restored. Specifically, the recovery process only needsdover S L ES F S &
those damaged registers contained in the SSM. If the spseula SRR
state only contains a few registers, the recovery proceisbwi (b) SPEC2000 FP
effectively hidden by the execution of useful instructidrem the
correct path.

Figure 4 shows that on an average the speculative state uigon m
predictions for 17 SPEC2000 benchmarks accounts for ard0#d
of the architectural state. We obtain these results by ngtie

409

10%

Figure 4: Percentage of Speculative State upon Misprediain

benchmarks on our baseline micro-architecture model pteden of it is created and inserted into the tail of the checkpoiméwe.

Section 4. When the first pending misprediction is recovered, the hesuter
moves to the next entry towards the tail pointer and its alled

3.2 Handling Mispredictions checkpoint entry is released. When the checkpoint queuellis f

Since EMR does not stall upon a misprediction, new mispredic EMR stalls the front end until the first pending mispredintis
tions may occur before the current one is fully restored. thile fully recovered. We will discuss how to use the checkpoirstzde
mispredictions may be in-flight. To handle this situatiom use a to handle the misprediction and restore the correct staBeation
global Damaged Register Mask (DRM), that is visible to new in 3-4. To maintain the multiple mispredictions, we need tostuer
structions, as shown in Figure 3(b). Once the speculatate $6 three cases when a misprediction occurs:
identified, we combine it with the DRMDRM = DRM Vv SSM, to
reflect the new global speculative state.

In order to rapidly restore the values to the damaged registe
and correctly identify the physical registers associatét worrect
values, upon a misprediction EMR creates a copy of the curren
front-end map table and the SSM for the state recovery. @rilie
traditional checkpointing [10] and the recent work [1, 2],1dhich
creates checkpoints on every branch or on some selectedhgsn

Case 1 No pending misprediction exists. Since the current mispre-
diction is the only one in the pipelin®RM = 0. LetBs be
the mispredicted branch. SSM is generated as described in
Section 3.1, which represents the speculative state &t.of
In this case, the DRM is set to the SSM since the set of dam-
aged registers consists only of those on the speculative pat

EMR creates checkpoints upon mispredictions. Itis called the Mis-
prediction Map Table (MMAP). Front-end Mispredicon viap Table | |

MMAP has two fields, the Mapping Tag and the Speculative bit, MepTave s g e s o g
as shown in Figure 5(a). The Speculative bit decides whetteer ' o N ' ecioom
corresponding logical register needs to be restored ofTia.map- P — e))
ping tag shows the renaming register to which the correateval =~ 7= Mot P
needs to be restored. _ |

An N-entry circular queue of checkpoints is needed if as many))

(a) Checkpoint (b) Checkpoint Stack

asN pending mispredictions are allowed to be in-flight. Shown in
Figure 5(b), the checkpoint queue is maintained as a cirbulifer.
The head pointer refers the first checkpoint, and the taihteoi Figure 5: Checkpointing to Handle Multiple Mispredictions
always points the next free entry. Upon a misprediction MiMAP

44

of B¢. Thus,

DRM = DRM V SSM = S5 1)
The current front-end map table and the SSM are copied into
MMAP ; and MMAP% is inserted into the checkpoint queue
as shown in Figure 6(a). Bis the only misprediction in-
flight.

Case 2 A misprediction occurs while the processor recovers from
n earlier mispredictions. In this situation, the youngemuta,
B¢ occurs while the processor is recovering franprevi-
ously mispredicted brancheB;, ... Bj, ,. Hereig <...<
in_1 < f. Then the DRM will be the union of the specula-
tive state oB¢, SS; in the SSM, and the speculative states of
Bi, ... Bi, ,, which areS5, ... S§, ,. SinceS5, ... S§ ,
have already been generated and are contained in the DRM

DRM = DRM v SSM =SS, V... VSS, , V SS @

In Figure 6(b), the copy of the current front-end map table
and the SSM are copied into MMAPand MMAP is in-
serted into the checkpoint queue. Therera#el mispredic-
tions in flight afterBs is mispredicted.

head heac

"" chec)]izslgi.\
sac) oo
8
S
2

(c) Case 3

head

(b) Case 2

Figure 6: Three Cases of Multiple Mispredictions

Case 3 A misprediction occurs whila mispredictions are in-flight.
Assume that the processor is recovering fnromispredicted
branchesBj, ... Bj, ,. The DRM contains the union of
SS,...SS, ;. Since branches can be resolved out-of-order, it
is possible the new misprediction is detected on a br&ich
which is younger thaB;; and older tha;,,,. Hereij < f <
ij+1, andip <ij1 <ip_1. Obviously, branches from; _, to
Bi, , are on the speculative path B¢. Any mispredictions
of Bj;,, throughB; _, are false mispredictions. The specula-
tive stateSS; generated in the SSM contains the speculative

statesS§,, ... S§,_,. Thus,
DRM = DRMVSSM
= SS,V...VS§,VSS,,,V...VS§ , VS5
= S§,V...VSS, VSS ®3)
The DRM now represents the new union of the speculative

state ofB; and the speculative statesRyf ...B;,. Any false
mispredictions that are caused by invalid branches through
the speculative path &; are covered by the misprediction of

45

Bs. In Figure 6(c), the MMAPs foB; _, ...B; _, are flushed
from the checkpoint queue. The MMAP f&; is created
and inserted into the queue.

The DRM always represents the complete set of all damaged reg
isters of the multiple in-flight mispredictions. With the DR the
processor can easily distinguish those instructions fioercbrrect
path that reference any incorrect state.

3.3 Handling Consumer Instructions of Spec-
ulative State

After the processor identifies the speculative state, ihgka the
PC to the correct target of the mispredicted branch. Newtnst
tions from the correct path are continuously fetched andmesd.
Within the front-end map table, some logical registers beglto
the in-order state, and others belong to the speculatite. stian
instruction only accesses the in-order state, which is aotabed,
it can execute normally without any problem. If an instrantref-
erences the incorrect speculative state, EMR does not #fiewn-
struction to execute since it will access an incorrect value

Traditionally, when the processor dispatches an insadtito
the instruction window, the ready bit of an operand is setatidv
if the operand has already been computed [19]. In our meshani
if an operand belongs to the in-order state, the ready bitiket
normally, depending on whether this value is computed or Ifidit
belongs to the incorrect speculative state, the ready bitlghbe set
as invalid even if the value has already been computed. Uking
DRM, simple logic is enough to handle both casBs= Dj AVj,
whereD; is theith bit in the DRM, corresponding thié" logical
register,Ris the operand ready bit an is the value ready bit of
the physical register allocated to tHB logical register. IfD; is 0,
this operand is not damaged and is ready if the value hasdglrea
been computed. B; is 1, this operand is damaged and is not ready.

During the renaming stage, each producer instruction sebet
D-bit of its logical destination in the DRM. Any subsequerstinic-
tion that needs that logical register as an operand wilrezfee the
new, undamaged state.

When theD-bit is set to 1, instructions that reference this dam-
aged speculative state wait in the reservation statiorikthatcor-
rect state is restored. Instructions that access only uadachreg-
isters proceed without waiting.

Figure 7 shows the percentage of instructions that access da
aged and undamaged registers from 17 programs of the SPBC200
benchmark suite. As can be seen, on average only 18% and 40%
of all instructions reference damaged registers in CFP2000)
CINT2000, respectively. Using EMR, instructions referi@gcun-
damaged registers never wait unnecessarily because ofnahbra
misprediction as new instructions are fetched and renarmsedju
the current map table values without interruption.

3.4 Repairing Incorrect Speculative State

To maintain the program’s correctness, EMR needs to repair t
speculative state by restoring the correct data from therder
state. Then those instructions which reference the damsigee
can be executed correctly and the program semantics is airaeat

Like RMAP, EMR uses a retirement map table to construct the
in-order state at the misprediction point sequentiallyotigh the
retire logic. When an instruction retires, it updates thtreenent
map table to indicate that the result register is in the itheostate.
When a mispredicted branch reaches the head of the reorfier,bu
the retirement state is also the in-order state of this reiipted
branch. EMR records the speculative state in the MMAP when a
misprediction happens. When the mispredicted branch iegusi

1009

Rj is set. That indicates it belongs to the speculative statof
The correct data needs to be restored from the in-order &tate
speculative state? — Py. After restoring the correct data value,
EMR broadcasts the tag & to the reservation stations to wake
o0 up blocked instructions that need this valuePJfis still the latest

r 1 renaming tag oR; in the front-end map table, the corresponding
409 . D-bit of R;j in the DRM is reset. Doing so will permit subsequent

F e ey el instructions which may acce8y as their operand to continue nor-
20%—— —— +—— [| g Non-Damaged Res\lLLs ma”y_

L H 1 After all registers in the speculative state are restored¢cov-
oL L 1| M ery of the current misprediction is done. At this point, retent
continues normally and the first entry in the checkpoint guisu
released.

(a) SPEC2000 INT Besides correctness, we need to consider the complexityeof t
1009 proposed mechanism as well. The recovery of each damagesd reg
ter would need one read-port and one write-port of the playseg-
ister file. Also, a tag bus would be needed to update the rasenv
stations. Given that in current superscalar processorseijister
file complexity is a significant issue, dedicating separatelwvare
for restoring may not be acceptable. In order not to incrésxh
the demand for register file ports and the complexity of tagelsu
of the reservation stations, EMR implements recovery thhotine
| [Accessng Damaged Reghiers L' functional units. Since each functional unit has two readspand
L8 g Non-Damaged Registprs one write-port to the register file, and one result tag bubéaeser-
H H 1 vation stations, the functional unit can process the regooper-

T ation for one damaged register without increasing the psues
complexity. Simply stated, EMR issues copy operations @fohm
mov Py, P, into the free functional units to restore the correct data.

(b) SPEC2000 FP Using move instructions in this manner achieves the desifedt
seamlessly. The copy operations execute as normal instnscis
Figure 7: Damaged/Non-Damaged Register Distribution they read from and write to the register file, and wake up depen

dent instructions blocked in the reservation stations. édwer, the

copy operations update the retirement map table and the BBIT
ter they restore the data just as normal producer instnustito. A

reaches the head of the reorder buffer, all previous mispiieds uniform pipeline design can be used for normal executionrend
point queue contains the MMAP of this misprediction. registers as there are free functional units. Note thatéfe are

With the retirement map table, RMAP, and the MMAP popped not many free functional units, this implies that the nevéjched
from the checkpoint queue, EMR can restore the correct data f jnstructions reference the undamaged state. In contrast there
the in-order state to the speculative state. are many free functional units the newly fetched instrutioef-
erence the damaged state. In the former case we can affoel to b

409

RMAP MMAP slow in the recovery; in the latter we can quickly restorareal and
Mapping Tag update RSs Mapping Tag _S unblock waiting instructions rapidly.
o : EMR needs 1 DBIT, 1 RMAP, anagt MMAPs if m pending mis-
y predictions are allowed to be in-flight. In Section 4, ourexment
R, P P 0| R . .
' . & ' shows that a smathis enough to extract high performance.
R, P, bt P, 1R
Po By ; 3.5 Optimization
mov Py Py So far the fundamental design space of EMR has been discussed
Although EMR allows execution of instructions which do nef-r
erence damaged values, it cannot start repairing damagdadsva
ros [[[[[[[[]- before a known in-order state is obtained. This state isitta
T T by waiting until the mispredicted branch reaches the heatth®f
head tail reorder buffer and under normal circumstances this may ad b
significant problem. However, when the head of the reordéebu
Figure 8: Restoring Speculative State is blocked by a long latency operation such as a cache miss, th
time for the mispredicted branch to reach the head of thedszor
Figure 8 illustrates the recovery process for the misptemticof buffer may become significant. During this time, the likelifdl of
B¢. The S-bit in the MMAP indicates whether a logical register finding instructions which do not reference the damagea stélt
is in the speculative state or not. For example, the S-bR;df rapidly diminish and the processor will eventually stall.

not set indicating thaR; is not damaged through the speculative We therefore augment our basic technique with an apprapriat
path ofB¢. As a result, the corresponding entries are the same both variation of WALK algorithms [1, 2]. Both RMAP+WALK and
in the RMAP and the MMAPH,). On the contrary, the S-bit of HISTORY+WALK are optimizations on the basic RMAP mecha-

46

nism and both methods walk through the reorder buffer entoe
reconstruct the in-order state without waiting for all imstions
prior to the mispredicted branch to retire. This technigsiei-
thogonal to EMR and EMR can also be improved by incorporat-
ing the WALK scheme. We refer to the combined technique as
EMR+WALK. As illustrated in Figure 9, the technique require
some additional fields in the MMAP.

MMAP

In-order Tag F Speculative TagS R

update RSs
Rs - 0 P 1|0 Py
és P 1 Py 10
Ry P 1 Py 1)1 Px Py
mov Py ,Px
A
ros [[[e] [p [o [[

WALK T

head tail

Figure 9: EMR+WALK

In order to repair the damaged speculative state in the MMAP,
EMR+WALK needs to restore the correct value for each damaged
register from the latest definition of the same logical dedton
prior to the misprediction point. EMR+WALK walks from the si
predicted branch towards the head of the reorder buffertteeve
the latest definition information from each ROB entry. When a
definition ROB entry is scanned, it is the latest definitionthoé
speculative destination register prior to the mispredittpoint if
the corresponding-bit (Speculative) is 1 and the-bit (Found) is
0 in the MMAP. If this is the case, the renaming tag of the desti
tion register is put into thén — order Tag field and theF-bit is set.
After EMR+WALK walks to the head of the ROB, if there is any
entry withS= 1 andF = 0 left, itsIn— order Tag can be retrieved
from the retirement map table.

Since thiSWALK process is independent from the retirement
logic, restoring correct values can be started as early asilpe,
without waiting for all instructions prior to the mispredtéd branch
to retire. Any entry in the MMAP witPS=1,F =1 andR=0
(Recovered) will trigger a move operatioin — order Tag —
Speculative Tag, if the correct value is ready and there is a free
functional unit. After the correct value is restored,Rit is set.

Since there can be multiple mispredictions in-flight sirané-
ously, multiple walk units are needed and the walk procegsahger
misprediction may cross older ones. All make the implentéana

have the appropriate cross-compiler, Fortran 90 and C+<¢hsen
marks in the SPEC2000 suite have been excluded. The architec
tural simulators used in this study are written in the ADLdaage

[16] and automatically generated by tR&ST simulation system.
Simulators model the basic superscalar pipeline showrngargil0

and are cycle accurate.

Memory
Disambiguator

Functional

ISSUE
WINDOW

Unit

decode

rename

dispatch
MEMORY

Array

<
S
2
3
£

Reorder and Commit l

Register File

5

Wakeup
Select

Decode
Rename

Memory
Access

‘ Fetch ‘ Execute Commit

Figure 10: Machine Model

The parameters of the baseline model are shown in Table h. Bot
load and store instructions are allowed to issue out-o&o0[6,
17] using the store set memory dependence predictor. Fivid mo
els with different misprediction recovery mechanisms asdeated
and compared:

1. RMAP, the traditional state-reconstructing method. A retire-

ment map table is used to restore the state.

. RMAP+WALK, the optimization of the above method. With
the retirement map table, it walks from the head of ROB to-
wards to the misprediction point to restore the state.

w

. EMR(M=i), our proposed fast misprediction recovery mech-
anism, which can handigpending mispredictions.

i

. EMR+WALK (M=i), the optimization of EMR, which is com-
bined with the WALK method.

. UL_CHK(UNLIMITED CHECKPOINTS), in which a check-
point is made with every branch. It can immediately restore
the correct state from the checkpoint when a mispredicton i
detected.

We kept the above five machines identical in all aspects éxcep
the branch misprediction recovery scheme. In two WALK mod-
els, RMAP+WALK and EMR+WALK, the walking step matches
the machine’s issue width, 8/cycle.

complicated. To simplify the implementation, only one waho-

cess is allowed for the first pending misprediction. Once s mi

prediction becomes the oldest one, its walk process andriegt

process can start immediately.

4. EXPERIMENTAL EVALUATION

4.1 Experimental Methodology

In order to evaluate the performance of EMR, we have coltecte

results from 17 benchmarks of the SPEC2000 benchmark suite.

To limit the simulation time, all benchmarks are run to coepl

Parameter | Configuration
Issue/Fetch/Retire width 8/8/8
Instruction window size 128
Reorder buffer size 256
Register file (unique) 256
Functional units [ssue width Symmetric
Branch predictor 16K gshare
BTB 1024-entry
Return-address stack 32-entry
Dcache L1: 32KB, 4-way, 64B/line, 2 cycles

L2: 512KB, 8-way, 64B/line, 10 cycles
Memory 8B/line, 40 cycles first chunk,

4 cycles inter-chunk.

tion using the reduced reference inputs from the MinneSPBRw
load [13]. The benchmarks are compiled with the gcc 3.2.3gro
compiler targeting the MIPS 1V instruction set. Since we ad n

a7

Table 1: Machine Configurations

4.2 Performance Results

The instructions per cycle (IPC) for each program in the benc
mark suite using the 5 recovery models stated previousliios/a
in Figure 11. EMR/+WALK are implemented usidd = 4, han-
dling at most 4 branch mispredictions simultaneously. Wedis-
cuss the selection of different valuesMfin Section 4.3. As can
be seen from Figure 11, EMR outperforms the traditional RMAP
mechanism across all benchmarks, while EMR+WALK performs
better than RMAP+WALK. Furthermore, EMR+WALK performs
nearly as well as ULCHK.

To help understand the performance results for the 5 diftere
models, Figure 12 illustrates the percent speedup over RMAP
the other four models. As shown in Figure 12, RMAP+WALK ob-
tains a 2.9% and 0.4% harmonic mean improvement over RMAP
on CINT2000 and CFP2000, respectively. EMR achieves a 4.7%
and 1.0% improvement over RMAP. Recall as discussed in Sec-
tion 3.5, the restoring process of EMR can be delayed sigmifig
due to some long latency operations, such as cache missesir fl
ing point operations. Long latency operations cause EMRete p
form worse than RMAP+WALK on several CFP2000 benchmarks
and on 181.mcf, where the cache miss rate is relatively tghthe
other hand, EMR+WALK utilizes the advantage from the WALK
method and overcomes this shortcoming. Thus, it outpegorm
RMAP+WALK across all benchmarks. As shown in Figure 12(a),
on the nine integer benchmarks, EMR+WALK outperforms RMAP
by an average of 9.0% with a maximum improvement of 19.9%
(175.vpr). The best method, UCHK, improves the performance
by a harmonic mean of 10.2%. In other words, EMR+WALK
achieves(1+ 9.0%)/(1+ 10.2%) = 99% of the harmonic mean
performance of ULCHK.

Although EMR+WALK obtains a lower performance improve-
ment on CFP2000 compared to CINT2000, our technique obtains
an arithmetic mean improvement of 4.8% and a harmonic mean im
provement of 1.3% on the eight CFP2000 benchmarks. As shown
in Figure 12(b), EMR+WALK achieves the same harmonic mean
performance as UICHK. In most cases, floating-point programs
have relatively better branch prediction accuracies uaihgnced
branch prediction techniques. Therefore, they are lessithen
than integer programs to the misprediction recovery meishas

4.3 Misprediction-under-Misprediction

This section evaluates the performance of EMR/+WALK when
the number of allowed outstanding mispredictions variasorer
to achieve a good trade-off between performance and thevaaed
cost associated with the misprediction checkpoints, EMRlém
mentations need to choose a reasonable valuBlfdfigure 13 il-
lustrates the respective performance of different EMR anpnta-
tions where the number of misprediction maps is varied fide 1
to M = 16. We only present the harmonic mean IPC for our entire
suite of SPEC2000 benchmarks and omit the details of indalid
benchmarks. As can be seen, both performance lines of EMR and
EMR+WALK have a steep gradient frod =1 to M = 2. Af-
ter each method reaches the vaMe= 2, performance levels off.
Recall that the front-end is stalled when i misprediction is
detected in EMR/+WALK withM =i. WhenM = 1, EMR and
EMR+WALK stall fetching new instructions until the curremis-
prediction is recovered resulting in poor performance. es\value
of M is increased EMR and EMR+WALK can better hide the la-
tency of state recovery.

With a highly accurate branch predictor, the probabilityhai/-
ing many mispredictions in succession diminishes. Undeh sir-
cumstances allowing many mispredictions to be in-flight wilt
provide significant performance improvements. As can b see

48

— 5

1.7

Harmonic Mean IPC

&— EMR+WALK with M
EMR with M

1 1 1 L
M=2 M=4 M=8 M=12
The Number of In-flight Mispredictions

L
M=16

1
M=1

Figure 13: Performance of EMR/+WALK with Different M

from Figure 13, selectinlyl = 4 provides the best trade-off between
performance and hardware complexity for both recovery rfede
Using 4 checkpoints, EMR/+WALK can fully exploit its advage.

Theoretical analysis verifies the experimental results.bdth
EMR models, checkpoints are created only upon mispredistith
the number of in-flight branches & then

M = Bsmisprediction rate.

In our experimental models, the number of total in-flighttine-
tions is 256. Given that on an average every 3-5 instructions
branch is encountere is around 50. Assume that a gshare pre-
dictor, utilized in the experiment, has less than 10% migdigte®n
rate, therM ~ 4. In contrast, ULCHK would need about 50 check-
points as each branch would require a checkpoint. Our EMRhmec
anism roughly requiremisprediction rate% of the hardware cost
of UL_CHK while capturing 99% performance.

4.4 Towards a Large Instruction Window

This section studies the performance variation of the five re
covery methods when the instruction window size and thedesor
buffer size increase. Figure 14 shows the harmonic mean IPCs
when the instruction window size varies from 32 to 256. Tauc
the performance study on the misprediction recovery mashan
exclusively, the physical register file size is kept ideadin this
group of experiments.

19 T T

L_CHK

b | o—o EMR+WALK (M=4)
EMR (M=4)

% RMAP+WALK
RMAP

Harmonic Mean IPC

5 |
15 32/6.

1 L L
4 64/128 128/256 256/512

Instruction Window Size / Reorder Buffer Size

Figure 14: Performance of 5 Models with Different IW/ROB
sizes

As shown in Figure 14, all five models obtain performance im-
provement due to an increased instruction window size. Mewe
the strides of the improvement are not equal. As can be sken, t
performance gap between RMAP and I\@HK becomes larger as
instruction window size increases. The performance of RM&P
duces from 96% of the performance of WLHK down to 93% as

RMAP
RMAP+WALK
EMR (M=4)

EMR+WALK (M=4)

(a) SPEC2000 INT

RMAP
RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

omomEO

(b) SPEC2000 FP

Figure 11: Performance of five models

RMAP+WALK

EMR (M=4)

EMR+WALK (M=4)
HK

=] R=] |

i
i

Speedup Over RMAP
Speedup Over RMAP

8
k3

H
5
k3

»—\
S
b3

o
S

IS
kS

RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

OEoE

32

&

(a) SPEC2000 INT

@
X
&
&

&
>
&

(b) SPEC2000 FP

Figure 12: Speedup of RMAP+WALK, EMR/+WALK (M=4) and UL _CHK over RMAP

the instruction window size increases from 32 to 256. This-ph
nomenon indicates that misprediction recovery is morécatifor
large instruction window processors. In contrast, EMR+ViAdl-
ways achieves within 99% performance of W@IHK across all win-
dow sizes. EMR+WALK is more scalable than traditional state
reconstructing recovery methods.

5. RELATED WORK

In [1, 2], Akkaryet al. use selective checkpoints at low-confidence
branches to recover from branch mispredictions. Selectiexk-
pointing provides better scalability as the instructiomeow be-
comes larger. However, as the size of the instruction window
increased, the distance between a valid checkpoint and.ithent
instruction pointer increases, which in-turn increasesabssibility
of re-executing already executed instructions since tididence
estimator cannot be perfect.

Gandhiet al. [8] propose Selective Branch Recovery (SBR) to
reduce branch misprediction penalty by exploiting a fredlyeoc-
curring type of control flow independence, called exact eonv
gence. The results of some convergent instructions cordpute
the mispredicted path can be reused. Thus, the recovenitpena
is reduced since those convergent instructions do not nede t
fetched/renamed again. Non-convergent instructions emifs-
predicted path are re-issued as move operations. Each soah m
operation copies the value from the previous renaming physi
register of its destination to its renaming physical registThus
the correct value of each logical destination is restorezllpnone
through the definition chain similar to EMR state recovery.

In [3], Aragonet al. analyze the performance loss due to branch
mispredictions. They break the misprediction penalty ithteee

49

subcategories: pipeline-fill penalty, window-fill penalgnd seri-
alization penalty. They propose a Dual Path Instructionrc€ss-

ing (DPIP) to reduce the pipeline-fill penalty. In DPIP, a ow
confidence branch is forked and both paths are fetched and re-
named, however, the alternative path is not executed. Akgloéat

of the map table is created upon the low-confidence branchgo s
port the dual path processing. Thus, when a mispredictippéuas,
some instructions from the correct path have already beehdd

and renamed in the pipeline. DPIP can only fork once sincg onl
two active paths are allowed at the same time.

A significant body of research has provided us with increglgin
better branch prediction accuracies [23, 15, 21, 5, 11]hadgh
the type of branch predictor is orthogonal to the EMR techaijq
EMR will provide diminishing returns as the accuracy of hran
prediction increases. Similarly, it provides significaetiermance
benefits as branch predictor accuracy decreases. EMR mayden
blur the differences between different branch predictors laence
may favor less accurate but faster branch predictors.

Armstronget al. [4] propose to reduce performance degradation
caused by branch misprediction. They propose a mechanism to
leverage wrong path events (WPEs), which occur during gerio
of misprediction, such as a NULL pointer memory access. WPEs
can be used to detect whether a branch was mispredictedehiefor
is executed. Thus, the time for detecting mispredictioreduced.
When a wrong path event occurs, misprediction recovery @n b
initiated early. Utilization of WPEs is orthogonal to EMR.

6. CONCLUSIONS

As pipeline depth increases, branch misprediction becoanes
primary bottleneck in obtaining high performance. We hake p

sented a fast recovery mechanism, EMR, that reduces tmejabé
branch mispredictions by immediately starting to processruc-
tions from the correct target without waiting for the prosessstate
to be restored. Our technique stores the fine-grain procetse in
the checkpoint, MMAP, upon each misprediction and forwasls
ues to blocked instructions by using free functional uniteking
EMR a complexity-effective approach.

EMR+WALK obtains an average performance speedup of 9.0%

over the traditional RMAP on CINT2000. Moreover, it achigve
99% of the performance obtained by an unlimited checkpant r
covery method using only 4 checkpoints.

7.

ACKNOWLEDGMENTS

[12]

[13]

[14]

The authors would like to thank the anonymous reviewers for [15]

their comments. This work is supported in part by a NSF CAREER

award (CCR-0347592) to Sonénder.

8.
(1]

(2]

(3]

[4]

(5]

(6]

[7]

REFERENCES
H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint
processing and recovery: Towards scalable large instncti
window processors. IRroceedings of the 36th International
Symposium on Microarchitecture, pages 423—-434, December
2003.
H. Akkary, R. Rajwar, and S. T. Srinivasan. An analysisof
resource efficient checkpoint architectuCM Transactions
on Architecture and Code Optimization, Volume 1:418-444,
December 2004.
J. L. Aragon, J. Gonzalez, A. Gonzalez, and J. E. Smith.
Dual path instruction processing. Rroceedings of the 2002
International Conference on Supercomputing, pages
220-229, June 2002.
D. N. Armstrong, H. Kim, O.Mutlu, and Y. N. Patt. Wrong
path events: Exploiting unusual and illegal program betravi
for early misprediction detection and recovery. In
Proceedings of the 37th International Symposium on
Microarchitecture (MICRO-37), pages 119-128, Portland,
Oregon, 2004.
I.-C. K. Chih-Chieh Lee and T. N. Mudge. The bi-mode
branch predictor. IThe 30th Annual IEEE-ACM
International Symposium on Microarchitecture, pages —,
December 1997.
G. Z. Chrysos and J. S. Emer. Memory dependence
prediction using store sets. Rroceedings of the 25th
International Conference on Computer Architecture, pages
142-153, June 1998.
COMPAQ. Alpha 21264 microprocessor hardware reference
manual. July 1999.

[8] A. Gandhi, H. Akkary, and S. T. Srinivasan. Reducing lofan

9]

[10]

[11]

misprediction penalty via selective branch recovery.
Proceedings of the 10th International Symposium on
High-Performance Computer Architecture, pages 254-264,
February 2004.

G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the
pentium 4 processor. limtel Technology Journal, February
2001.

W. W. Hwu and Y. N. Patt. Checkpoint repair for
out-of-order execution machines. Pnoceedings of the 14th
Annual International Symposium on Computer Architecture,
pages 18-26, June 1987.

D. A. Jimenez and C. Lin. Dynamic branch prediction with
perceptronsProceedings of the Seventh International

50

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

Symposium on High-Performance Computer Architecture,
pages 197-206, January 2001.

M. JohnsonSuperscalar Microprocessor Design. Prentice
Hall, 1991.

A. KleinOsowski and D. J. Lilja. Minnespec: A new spec
benchmark workload for simulation-based computer
architecture researclomputer Architecture Letters,

Volume 1, June 2002.

J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic, and
J. Torrellas. Cherry: Checkpointed early resource rengcli
in out-of-order microprocessors. Rroceedings of the 35th
International Symposium on Microarchitecture (MICRO-35),
pages 3-14, Istanbul, Turkey, November 2002.

S. McFarling. Combining branch predictors. Technical
Report WRL-TN-36, Digital Western Research Laboratory,
1993.

S.Onder and R. Gupta. Automatic generation of
microarchitecture simulators. MEEE International
Conference on Computer Languages, pages 80-89, Chicago,
May 1998.

S.Onder and R. Gupta. Dynamic memory disambiguation in
the presence of out-of-order store issuing32md Annual
IEEE-ACM International Symposium on Microarchitecture,
pages 170 — 176, November 1999.

S. Palacharla, N. P. Jouppi, and J. E. Smith. Quantifyfire
complexity of superscalar processors. Technical Report
CS-TR-96-1328, University of Wisconsin Technical Report,
1996.

D. Sima, T. Fountain, and P. Kacsudvanced Computer
Architectures, A Design Space Approach.
ADDISON-WESLEY, 1997.

E. Sprangle and D. Carmean. Increasing processor
performance by implementing deeper pipelines. In
Proceedings of the 29th Annual International Symposium on
Computer Architecture, pages 25-34, May 2002.

E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt. The
agree predictor:a mechanism for reducing negative branch
history interference. IfProceedings of the 24th International
Conference on Computer Architecture, pages 284-291, 1997.
K. C. Yeager. The mips r10000 superscalar micropramess
In |EEE Micro, pages 28—-44, April 1996.

T.-Y. Yeh and Y. N. Patt. Alternative implementatiorfs o
two-level adaptive branch prediction. Rroceedings of the
19th International Conference on Computer Architecture,
pages 124-134, 1992.

