
Fast Branch Misprediction Recovery in Out-of-order
Superscalar Processors

Peng Zhou Soner Önder Steve Carr
Department of Computer Science
Michigan Technological University
Houghton, Michigan 49931-1295

{pzhou,soner,carr}@mtu.edu

ABSTRACT
Current trends in modern out-of-order processors involve imple-
menting deeper pipelines and a large instruction window to achieve
high performance. However, as pipeline depth increases, the branch
misprediction penalty becomes a critical factor in overallprocessor
performance. Current approaches to handling branch mispredic-
tions either incrementally roll back to in-order state by waiting un-
til the mispredicted branch reaches the head of the reorder buffer,
or utilize checkpointing at branches for faster recovery. Rolling
back to in-order state stalls the pipeline for a significant number of
cycles and checkpointing is costly.

This paper proposes a fast recovery mechanism, called Eager
Misprediction Recovery (EMR), to reduce the branch mispredic-
tion penalty. Upon a misprediction, the processor immediately
starts fetching and renaming instructions from the correctpath with-
out restoring the map table. Those instructions that accessincorrect
speculative values wait until the correct data are restored; however,
instructions that access correct values continue executing while re-
covery occurs. Thus, the recovery mechanism hides the latency of
long branch recovery with useful instructions.

EMR achieves a mean performance improvement very close to a
recovery mechanism that supports checkpointing at each branch. In
addition, EMR provides an average of 9.0% and up to 19.9% better
performance than traditional sequential misprediction recovery on
the SPEC2000 benchmark suite.

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: Single Data Stream Architec-
tures

General Terms
Design, Performance

Keywords
Branch misprediction, processor state, recovery, checkpoint

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS ’05, June 20-22, Boston, MA, USA.
Copyright 2005 ACM 1-59593-167-8/06/2005 ...$5.00.

1. INTRODUCTION
Accurate branch prediction is crucial to the performance ofmod-

ern out-of-order processors. As the trend of utilizing deeper pipelines
to obtain higher clock rates for higher performance continues, the
importance of high branch prediction accuracy magnifies because
of the commensurate increase in branch misprediction penalty. Pre-
vious work has shown that branch mispredictions are the single
largest contributor to performance degradation in modern super-
scalar processors [20]. Two options exist for solving this problem:
improving prediction accuracy and speeding up the misprediction
recovery process. Improving branch prediction accuracy isa well
studied problem. In this paper, we examine the other approach
by proposing a novel fast misprediction recovery mechanismthat
overlaps the misprediction recovery with the execution of useful
instructions, thereby improving performance.

Typically, branch misprediction recovery requires stalling the
front-end of the processor, repairing the architectural state, and
then restarting the process of fetching and renaming instructions
from the correct path. Is stalling the front-end necessary?Can the
processor continue fetching and executing instructions before re-
pairing the architectural state when it detects a misprediction, and
still maintain the correct program semantics?

To address the above questions, we describe a fast recovery mech-
anism, called Eager Misprediction Recovery (EMR), that allows
instructions accessing correct values to continue executing while
forcing instructions that reference incorrect speculative values to
wait until the correct data are restored. EMR makes three main
contributions:

1. EMR provides a mechanism to identify precisely which val-
ues are speculative on a per register basis. It records which
registers are modified after a branch prediction is made, giv-
ing the processor fine-grain information on whether a spe-
cific register contains a correct or speculative value.

2. EMR does not stall the front-end when a misprediction oc-
curs. The processor continues fetching instructions down the
correct path seamlessly and allows instructions that access
only correct values to execute without waiting for all specu-
lative values to be repaired.

3. EMR provides a mechanism to force instructions that ref-
erence speculative values to wait until those values are re-
paired. Instead of restoring map table entries to allow access
to the correct value, the correct value is forwarded to the ap-
propriate physical register recorded in the map table.

Overall, EMR focuses on incrementally restoring correct values to
the registers recorded in the current map table, only when neces-
sary, rather than restoring the map table so that the entriespoint

41

to the physical registers where the correct values reside. This ap-
proach allows EMR to overlap the recovery process with the exe-
cution of useful instructions down the correct path, improving ILP.

The remainder of this paper is organized as follows. Section2
discusses current branch misprediction recovery techniques and mo-
tivates EMR. Section 3 presents the detailed design of EMR. Sec-
tion 4 details our experimental evaluation, including detailed cycle-
accurate simulations. Section 5 discusses related work, and finally,
Section 6 gives our conclusions.

2. APPROACHES TO BRANCH MISPRE-
DICTION RECOVERY

In order to illustrate the issues in dealing with branch mispre-
dictions in an out-of-order issue processor that performs control
speculation, we follow the terminology of in-order, speculative and
architectural states [12]. Implementing correct program execution
despite mis-speculations requires a control-speculativeprocessor to
be aware of these states in such a way that the processor always uses
the correct state for any externally visible changes in datalocations.

...

...

...

...

...

B is resolved and misprediction occurs

branch B

In−order State

Speculative State

R4 = ...
R7 = ...

R3 = ...

R7 = ...
R5 = ...

S
pe

cu
la

tiv
e

P
at

h

Current Architectural State

at B

after B

(Front−end Map Table)

Figure 1: States upon Misprediction

Let us consider Figure 1 which illustrates the in-order, specu-
lative and architectural states at the point of a branch mispredic-
tion. We define the in-order state as the state that would havebeen
reached if the program were executed in program order, up to the
point of interest, and the speculative state as the set of values pro-
duced that have not been committed. As should be clear, newer
instructions should use values from the in-order state if the values
have not been modified (i.e., are not part of the speculative state)
and should use values from the speculative state otherwise.Defin-
ing the architectural state as the union of the in-order and specula-
tive states conveniently describe the set of values to whichany new
speculatively fetched instruction should reference. For example,
in Figure 1 the set of values produced before the mis-speculating
branch are described as thein-order state at B, the set of speculative
values produced after B is defined as thespeculative state after B,
and the architectural state at the point of misprediction isdetected
as thecurrent architectural state. Obviously, the in-order state at
B is the same state as the architectural state when the branchhad
been fetched.

Traditionally, there have been two main approaches to imple-
menting the correct behavior when employing control speculation.
The first approach involves mechanisms that rely on taking snap-
shots, orcheckpoints, of the processor state at appropriate points
and reverting back to the corresponding snapshot when a control
mis-speculation is detected [10]. The second approach involves
mechanisms that reconstruct the desired state by sequentially pro-
cessing the in-flight instructions in program order until a deviation
from the program order is reached (i.e., the mispredicting branch is
encountered). Two well known mechanisms employed in the sec-
ond approach are the history buffer and the future file mechanisms.

We collectively refer to them as state-reconstructing mechanisms.
Obviously, a checkpointing processor does not have to wait too

long upon a mis-speculation since a snapshot of the correct state
is readily available; however, checkpointing limits the number of
speculative in-flight branches due to the associated hardware costs.
For example, the MIPS R10000 maintains a branch stack where
each entry contains a complete copy of the integer and floating-
point map tables [22]. At the point of recognizing a misprediction,
the processor restores the front-end map table from the correspond-
ing checkpoint. While checkpointing yields fast recovery,its cost
can be prohibitive. Space to store the checkpoints limits the num-
ber of pending branches that can be in-flight. The MIPS R10000
allows only 4 pending branches to be in-flight since its branch stack
has only 4 entries. Note that a CAM structured map table design
will require smaller storage than a RAM structured map tablefor
each checkpoint. In a RAM structured design, the total number
of entries in the map table is equal to the number of logical regis-
ters, and each entry holds the renamed physical register designator.
On the other hand, CAM-structured designs use a table in which
the total number of entries is equal to the number of physicalreg-
isters, and each entry keeps the logical register designator and a
valid bit to indicate if it is the latest mapping [18]. A checkpoint of
a CAM map table needs to copy only the valid bits, which is less
costly than checkpointing in RAM map tables. For example, the
Alpha 21264 [7], which uses the CAM map table, supports up to
80 checkpoints, in essence providing the capability to recover the
state associated with any of the 80 in-flight instructions. Though
checkpointing of CAM map tables is not too expensive, the CAM-
structure itself may not scale well since higher degrees of ILP with
increased issue widths require a large number of physical registers.

It is important to note that the correspondence between the num-
ber of in-flight branches and the number of checkpoint buffers is
not mandatory. Although the number of checkpoints and branches
in flight usually match, there has been recent work which illus-
trates that there may be significant benefits in incorporating a con-
fidence mechanism and allowing more branches to be in-flight than
the storage size dedicated to checkpointing [2, 14].

In contrast to checkpointing, state-reconstructing mechanisms
can allow an arbitrary number of in-flight branches and, in addi-
tion, scale better due to the use of RAM-structured designs.Unfor-
tunately, state-reconstructing mechanisms do not immediately re-
store the correct state, since that state is not immediatelyavailable.
The state needs to be reconstructed by processing the in-flight in-
structions sequentially (typically through the retire logic). A com-
monly employed mechanism is to use a retirement map table called
RMAP [9]. If a RMAP is used, when an instruction retires, it up-
dates the retirement map table to indicate that the result register is
in the in-order state. The retirement logic ensures that exceptions
occur only if the operation causing the exception is the oldest, non-
retired operation in the machine [9]. At this point, the retirement
state is also the in-order state of this exception point. When a mis-
prediction occurs, the processor restores the architectural state, or
the front-end map table, from the retirement map table.

As can be seen, both approaches have their pros and cons. Al-
though using a RMAP requires only one extra map table, recovery
takes longer than necessary as renaming cannot start until all in-
structions prior to the mispredicted branch retire. If a long latency
operation prior to the branch exists,e.g., a cache miss, the mispre-
diction penalty increases significantly. Akkary,et al., discuss some
optimizations when using a retirement map table [1, 2]. These op-
timizations walk through the reorder buffer to restore the map ta-
ble without waiting for all prior instructions to retire. However,
the front-end stalls and instruction processing occurs sequentially,

42

giving anO(n) complexity wheren is the number of instructions
in-flight. Since more instructions appear in a processor with a large
instruction window, this results in a significant increase in the mis-
prediction penalty. A checkpointing mechanism on the otherhand
would either have to dedicate a large fraction of the chip area for
checkpoint data, or limit the number of in-flight instructions, in
essence limiting the amount of instruction level parallelism that can
be exploited.

Speculative
State

80%
In−order State

Architectural State

misprediction

t

mis−branch retires

traditional

EMR

*: speculative state restores the correct data from in−order state

RMAP
restart executionreconstruct

architectural state

redirect from the correct path

execute instructions which access in−order state

in−order state

update *
execute instructions

which access
speculative state

Figure 2: Overlapping Recovery with Useful Instructions

Despite the fact that these mechanisms appear to be drastically
different, checkpointing and state-reconstructing mechanisms share
a common property. Neither of these mechanisms allows resump-
tion of the fetching and renaming of new instructions from the cor-
rect path until a known processor state is restored (albeit the time
between the detection of the misprediction and resumption being
considerably shorter in case of checkpointing). In this paper, we
explore this opportunity that has not been previously considered.
Our approach, EMR,allows fetching and renaming instructions
immediately upon a branch misprediction and restores the state to
the correct stateas the instruction fetching/renaming continues. In
other words, it effectively hides the state recovery latency in a RAM
based map table design.

Key to the mechanism is selectively blocking the instructions
which may reference values that are part of the incorrect specu-
lative state, and allowing those instructions that do not tocontinue
executing freely. Those blocked instructions can later be unblocked
by some micro-architectural mechanism when the correct values
that they need become available, allowing seamless misprediction
handling in an out-of-order issue processor.

In order to better understand the performance potential of the
mechanism, let us consider the processor states and the timing of
the events in misprediction recovery shown in Figure 2. EMR
draws from the observation that the incorrect speculative state is
only a small part within the architectural state when a mispredic-
tion occurs. Our experiments show that on an average, the spec-
ulative state makes up about 20% of the architectural state upon
a misprediction in the SPEC2000 benchmarks. Moreover, around
70% of the subsequent instructions from the correct path reference
the in-order state whereas only 30% of the instructions needreg-
ister values which have been damaged because of mis-speculation.
In other words, a mechanism that employs EMR may need to block
only a small percentage of the instructions from the correctpath
while the state reconstruction continues and can hide most of the
time spent in reconstructing the correct architectural state.

3. EAGER MISPREDICTION RECOVERY
In this section, we present the design space of EMR. First, we

give a technique to identify the speculative state when a mispredic-
tion occurs. Second, we discuss how to handle multiple mispre-
dictions simultaneously. Third, we provide a mechanism to force
instructions that access the speculative state to wait. Finally, we

discuss how to restore the correct data to the incorrect speculative
state to maintain the program’s correctness.

3.1 Identifying Speculative State
The set of all registers that are defined on the speculative path

comprises the speculative state. When the processor detects a branch
misprediction, the speculative path consists of the set of instruc-
tions from the corresponding branch to the youngest instruction in
the pipeline. Any register defined on the speculative path belongs
to the speculative state of this mispredicted branch.

iB

J

B i+2
iSS

B i+1

K

I

B i+2

iSS

B i+1

iB

J: R7 = ...

K: R8 = ...

{R5, R7, R8}=

I: R5 = ...

(a) Speculative State

1

1

1

...

...

R8

R7

R5

 P45

 P38

 P23

1

1

1

...

...

R8

R7

R5

OR

1

1

1

SSM
i

 i

 i+1

 i+2

>=

>=
>=

D
R

M

mispredicted
branch

000001011000...0000

Index S

DBIT

i+2

GBIC

Map Table
Front−end

(b) State Masks

Figure 3: Identifying Speculative State

To identify the speculative state, EMR maintains a Global Branch
Index Counter (GBIC) for branches and a Dependent Branch Index
Table (DBIT) for logical registers. The GBIC records the index of
the youngest in-flight branch. When a branch is decoded, the GBIC
is incremented by 1 and assigned to it. The DBIT is indexed by the
logical register number, which includes two fields: one is the spec-
ulative (S) bit; the other is the branch index field. Initially, all S
bits are reset. When a producer instruction is decoded, the current
GBIC value is copied into the corresponding entry of its destina-
tion in the DBIT, and the S-bit is set. That indicates the destination
register is speculative and it is dependent on the current youngest
branch. When a producer instruction retires, if it is still the latest
definition of its logical destination, the corresponding S-bit of the
logical destination register is reset since it is in-order now and it
does not depend on any branch. The DBIT can be accessed in par-
allel with the front-end map table and therefore it will not increase
the cycle time of the decoding stage.

When a branch is mispredicted, in the DBIT, those registers whose
S-bit is set and the index value is greater than or equal to this branch
index are defined on its speculative path. They make up the specu-
lative state for the mispredicted branch.

43

The index counter needs log2N bits if the maximum number of
branches allowed to be in-flight isN. Since the counter zeroes when
it overflows, an extracolor bit is needed to handle the relative order
of branches correctly. Once the counter overflows and zeroes, the
color bit is flipped, from 0 to 1 or from 1 to 0. Each index is
assigned both the counter value and the color bit. When two indices
A and B are compared: A is greater than B if A’s value is greater
than B’s and both color bits are the same. Or, A is greater thanB
if A’s value is less than B’s and their color bits are different. As
a result, the GBIC and each branch index field in the DBIT need
log2N +1 bits.

Figure 3 illustrates the speculative state identification process.
The speculative state is represented by a mask of registers,called
Speculative State Mask (SSM). Suppose when a mispredictionoc-
curs on the branchBi, the branchesBi+1 andBi+2, and the producer
instructionsI, J andK have already been fetched and decoded spec-
ulatively, as shown in Figure 3(a). Figure 3(b) shows that the pro-
cessor generates the SSM ofBi by comparing its indexi with index
values in the DBIT entries whose S bits are set. If a register’s index
value is greater than or equal toi, with respect to the circular order,
then it is in the speculative state set ofBi, and the corresponding
bit in the SSM is set. In this example,R5, R7 andR8 comprise the
speculative state set ofBi. They are damaged and not available as
the operands for subsequent instructions until the correctvalues are
restored.

The speculative state represents exactly what registers need to be
restored. Specifically, the recovery process only needs to recover
those damaged registers contained in the SSM. If the speculative
state only contains a few registers, the recovery process will be
effectively hidden by the execution of useful instructionsfrom the
correct path.

Figure 4 shows that on an average the speculative state upon mis-
predictions for 17 SPEC2000 benchmarks accounts for around20%
of the architectural state. We obtain these results by running the
benchmarks on our baseline micro-architecture model presented in
Section 4.

3.2 Handling Mispredictions
Since EMR does not stall upon a misprediction, new mispredic-

tions may occur before the current one is fully restored. Multiple
mispredictions may be in-flight. To handle this situation, we use a
global Damaged Register Mask (DRM), that is visible to new in-
structions, as shown in Figure 3(b). Once the speculative state is
identified, we combine it with the DRM,DRM = DRM ∨ SSM, to
reflect the new global speculative state.

In order to rapidly restore the values to the damaged registers
and correctly identify the physical registers associated with correct
values, upon a misprediction EMR creates a copy of the current
front-end map table and the SSM for the state recovery. Unlike the
traditional checkpointing [10] and the recent work [1, 2, 14], which
creates checkpoints on every branch or on some selected branches,
EMR creates checkpoints upon mispredictions. It is called the Mis-
prediction Map Table (MMAP).

MMAP has two fields, the Mapping Tag and the Speculative bit,
as shown in Figure 5(a). The Speculative bit decides whetherthe
corresponding logical register needs to be restored or not.The map-
ping tag shows the renaming register to which the correct value
needs to be restored.

An N-entry circular queue of checkpoints is needed if as many
asN pending mispredictions are allowed to be in-flight. Shown in
Figure 5(b), the checkpoint queue is maintained as a circular buffer.
The head pointer refers the first checkpoint, and the tail pointer
always points the next free entry. Upon a misprediction, theMMAP

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
3.

pe
rlb

m
k

25
6.

bz
ip

2
30

0.
tw

ol
f

A-m
ea

n

0%

10%

20%

30%

40%

Integer Registers
Floating-Point Registers

(a) SPEC2000 INT

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
30

1.
ap

si

A-m
ea

n

0%

10%

20%

30%

40%

Integer Register
Floating-Point Register

(b) SPEC2000 FP

Figure 4: Percentage of Speculative State upon Misprediction

of it is created and inserted into the tail of the checkpoint queue.
When the first pending misprediction is recovered, the head pointer
moves to the next entry towards the tail pointer and its allocated
checkpoint entry is released. When the checkpoint queue is full,
EMR stalls the front end until the first pending misprediction is
fully recovered. We will discuss how to use the checkpointedstate
to handle the misprediction and restore the correct state inSection
3.4. To maintain the multiple mispredictions, we need to consider
three cases when a misprediction occurs:

Case 1 No pending misprediction exists. Since the current mispre-
diction is the only one in the pipeline,DRM = 0. LetB f be
the mispredicted branch. SSM is generated as described in
Section 3.1, which represents the speculative state set ofB f .
In this case, the DRM is set to the SSM since the set of dam-
aged registers consists only of those on the speculative path

...

...

R8

R7

R5

1

1

1

1

1

1

...

...

 P23

 P45

 P38

Misprediction Map Table

Mapping Tag S

+

 P23

 P45

 P38

SSMMap Table

R8

R7

R5

Front−end

(a) Checkpoint

MMAP
i
0

MMAP i n−1

.

.

.

.

.

.

checkpoint
stack

head

MMAP
f

MMAP
i
0

MMAP i n−1

tail

tail

.

.

.

.

.

.

checkpoint
stack

head

(b) Checkpoint Stack

Figure 5: Checkpointing to Handle Multiple Mispredictions

44

of B f . Thus,

DRM = DRM∨SSM = SS f (1)

The current front-end map table and the SSM are copied into
MMAP f and MMAPf is inserted into the checkpoint queue
as shown in Figure 6(a). Bf is the only misprediction in-
flight.

Case 2 A misprediction occurs while the processor recovers from
n earlier mispredictions. In this situation, the younger branch,
B f occurs while the processor is recovering fromn previ-
ously mispredicted branches,Bi0 . . . Bin−1. Here i0 <.. .<
in−1 < f . Then the DRM will be the union of the specula-
tive state ofB f , SS f in the SSM, and the speculative states of
Bi0 . . . Bin−1, which areSSi0 . . . SSin−1. SinceSSi0 . . . SSin−1

have already been generated and are contained in the DRM,

DRM = DRM ∨SSM = SSi0∨. . .∨SSin−1 ∨SS f (2)

In Figure 6(b), the copy of the current front-end map table
and the SSM are copied into MMAPf and MMAPf is in-
serted into the checkpoint queue. There aren+1 mispredic-
tions in flight afterB f is mispredicted.

checkpoint
stack

head

tail

MMAP
f

tail

checkpoint
stack

head

(a) Case 1

MMAP
i
0

MMAP i n−1

.

.

.

.

.

.

checkpoint
stack

head

MMAP
f

MMAP
i
0

MMAP i n−1

tail

tail

.

.

.

.

.

.

checkpoint
stack

head

(b) Case 2

MMAP
i
0

M
M

A
P i j

MMAP
i
0

MMAP i j+1

M
M

A
P i j

M
M

A
P

i
n−1

tail

.

.
.

checkpoint
stack

head

.

.
.

checkpoint
stack

head

. . .
MMAP f

tail

(c) Case 3

Figure 6: Three Cases of Multiple Mispredictions

Case 3 A misprediction occurs whilen mispredictions are in-flight.
Assume that the processor is recovering fromn mispredicted
branches,Bi0 . . . Bin−1. The DRM contains the union of
SSi0 . . .SSin−1. Since branches can be resolved out-of-order, it
is possible the new misprediction is detected on a branchB f ,
which is younger thanBi j and older thanBi j+1. Herei j < f <
i j+1, andi0 ≤ i j+1 ≤ in−1. Obviously, branches fromBi j+1 to
Bin−1 are on the speculative path ofB f . Any mispredictions
of Bi j+1 throughBin−1 are false mispredictions. The specula-
tive stateSS f generated in the SSM contains the speculative
statesSSi j+1 . . . SSin−1. Thus,

DRM = DRM∨SSM

= SSi0∨. . .∨SSi j ∨SSi j+1∨. . .∨SSin−1 ∨SS f

= SSi0∨. . .∨SSi j ∨SS f (3)

The DRM now represents the new union of the speculative
state ofB f and the speculative states ofBi0 . . .Bi j . Any false
mispredictions that are caused by invalid branches through
the speculative path ofB f are covered by the misprediction of

B f . In Figure 6(c), the MMAPs forBi j+1 . . .Bin−1 are flushed
from the checkpoint queue. The MMAP forB f is created
and inserted into the queue.

The DRM always represents the complete set of all damaged reg-
isters of the multiple in-flight mispredictions. With the DRM, the
processor can easily distinguish those instructions from the correct
path that reference any incorrect state.

3.3 Handling Consumer Instructions of Spec-
ulative State

After the processor identifies the speculative state, it changes the
PC to the correct target of the mispredicted branch. New instruc-
tions from the correct path are continuously fetched and renamed.
Within the front-end map table, some logical registers belong to
the in-order state, and others belong to the speculative state. If an
instruction only accesses the in-order state, which is not damaged,
it can execute normally without any problem. If an instruction ref-
erences the incorrect speculative state, EMR does not allowthe in-
struction to execute since it will access an incorrect value.

Traditionally, when the processor dispatches an instruction into
the instruction window, the ready bit of an operand is set to valid
if the operand has already been computed [19]. In our mechanism,
if an operand belongs to the in-order state, the ready bit will be set
normally, depending on whether this value is computed or not. If it
belongs to the incorrect speculative state, the ready bit should be set
as invalid even if the value has already been computed. Usingthe
DRM, simple logic is enough to handle both cases:R = Di ∧V j,
whereDi is the ith bit in the DRM, corresponding theith logical
register,R is the operand ready bit andV j is the value ready bit of
the physical register allocated to theith logical register. IfDi is 0,
this operand is not damaged and is ready if the value has already
been computed. IfDi is 1, this operand is damaged and is not ready.

During the renaming stage, each producer instruction resets the
D-bit of its logical destination in the DRM. Any subsequent instruc-
tion that needs that logical register as an operand will reference the
new, undamaged state.

When theD-bit is set to 1, instructions that reference this dam-
aged speculative state wait in the reservation stations until the cor-
rect state is restored. Instructions that access only undamaged reg-
isters proceed without waiting.

Figure 7 shows the percentage of instructions that access dam-
aged and undamaged registers from 17 programs of the SPEC2000
benchmark suite. As can be seen, on average only 18% and 40%
of all instructions reference damaged registers in CFP2000and
CINT2000, respectively. Using EMR, instructions referencing un-
damaged registers never wait unnecessarily because of a branch
misprediction as new instructions are fetched and renamed using
the current map table values without interruption.

3.4 Repairing Incorrect Speculative State
To maintain the program’s correctness, EMR needs to repair the

speculative state by restoring the correct data from the in-order
state. Then those instructions which reference the damagedstate
can be executed correctly and the program semantics is maintained.

Like RMAP, EMR uses a retirement map table to construct the
in-order state at the misprediction point sequentially through the
retire logic. When an instruction retires, it updates the retirement
map table to indicate that the result register is in the in-order state.
When a mispredicted branch reaches the head of the reorder buffer,
the retirement state is also the in-order state of this mispredicted
branch. EMR records the speculative state in the MMAP when a
misprediction happens. When the mispredicted branch causing it

45

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
3.

pe
rlb

m
k

25
6.

bz
ip

2
30

0.
tw

ol
f

A-m
ea

n

0%

20%

40%

60%

80%

100%

Accessing Damaged Registers
Accessing Non-Damaged Resiters

(a) SPEC2000 INT

17
1.

sw
im

17
2.

m
gr

id
17

3.
ap

pl
u

17
7.

m
es

a
17

9.
ar

t
18

3.
eq

ua
ke

18
8.

am
m

p
30

1.
ap

si

A-m
ea

n

0%

20%

40%

60%

80%

100%

Accessing Damaged Registers
Accessing Non-Damaged Registers

(b) SPEC2000 FP

Figure 7: Damaged/Non-Damaged Register Distribution

reaches the head of the reorder buffer, all previous mispredictions
should have already been recovered. The first entry of the check-
point queue contains the MMAP of this misprediction.

With the retirement map table, RMAP, and the MMAP popped
from the checkpoint queue, EMR can restore the correct data from
the in-order state to the speculative state.

...

...

...

Ri

Rj Px

MMAP f

Ri

Rj

...

...

...

PyPx Py

Py

Bf

head tail

. . .ROB

Py Px

RMAP

Mapping Tag

Pa

update RSs Mapping Tag S

1

0Pa
FU

mov ,

Figure 8: Restoring Speculative State

Figure 8 illustrates the recovery process for the misprediction of
B f . The S-bit in the MMAP indicates whether a logical register
is in the speculative state or not. For example, the S-bit ofRi is
not set indicating thatRi is not damaged through the speculative
path ofB f . As a result, the corresponding entries are the same both
in the RMAP and the MMAP (Pa). On the contrary, the S-bit of

R j is set. That indicates it belongs to the speculative state ofB f .
The correct data needs to be restored from the in-order stateto the
speculative state:Px −→ Py. After restoring the correct data value,
EMR broadcasts the tag ofPy to the reservation stations to wake
up blocked instructions that need this value. IfPy is still the latest
renaming tag ofR j in the front-end map table, the corresponding
D-bit of R j in the DRM is reset. Doing so will permit subsequent
instructions which may accessR j as their operand to continue nor-
mally.

After all registers in the speculative state are restored the recov-
ery of the current misprediction is done. At this point, retirement
continues normally and the first entry in the checkpoint queue is
released.

Besides correctness, we need to consider the complexity of the
proposed mechanism as well. The recovery of each damaged regis-
ter would need one read-port and one write-port of the physical reg-
ister file. Also, a tag bus would be needed to update the reservation
stations. Given that in current superscalar processors theregister
file complexity is a significant issue, dedicating separate hardware
for restoring may not be acceptable. In order not to increaseboth
the demand for register file ports and the complexity of tag buses
of the reservation stations, EMR implements recovery through the
functional units. Since each functional unit has two read-ports and
one write-port to the register file, and one result tag bus to the reser-
vation stations, the functional unit can process the recovery oper-
ation for one damaged register without increasing the processor’s
complexity. Simply stated, EMR issues copy operations of the form
mov Py, Px, into the free functional units to restore the correct data.
Using move instructions in this manner achieves the desiredeffect
seamlessly. The copy operations execute as normal instructions as
they read from and write to the register file, and wake up depen-
dent instructions blocked in the reservation stations. Moreover, the
copy operations update the retirement map table and the DBITaf-
ter they restore the data just as normal producer instructions do. A
uniform pipeline design can be used for normal execution andre-
covery operations. Each cycle, EMR can restore as many damaged
registers as there are free functional units. Note that, if there are
not many free functional units, this implies that the newly fetched
instructions reference the undamaged state. In contrast, when there
are many free functional units the newly fetched instructions ref-
erence the damaged state. In the former case we can afford to be
slow in the recovery; in the latter we can quickly restore values and
unblock waiting instructions rapidly.

EMR needs 1 DBIT, 1 RMAP, andm MMAPs if m pending mis-
predictions are allowed to be in-flight. In Section 4, our experiment
shows that a smallm is enough to extract high performance.

3.5 Optimization
So far the fundamental design space of EMR has been discussed.

Although EMR allows execution of instructions which do not ref-
erence damaged values, it cannot start repairing damaged values
before a known in-order state is obtained. This state is obtained
by waiting until the mispredicted branch reaches the head ofthe
reorder buffer and under normal circumstances this may not be a
significant problem. However, when the head of the reorder buffer
is blocked by a long latency operation such as a cache miss, the
time for the mispredicted branch to reach the head of the reorder
buffer may become significant. During this time, the likelihood of
finding instructions which do not reference the damaged state will
rapidly diminish and the processor will eventually stall.

We therefore augment our basic technique with an appropriate
variation of WALK algorithms [1, 2]. Both RMAP+WALK and
HISTORY+WALK are optimizations on the basic RMAP mecha-

46

nism and both methods walk through the reorder buffer entries to
reconstruct the in-order state without waiting for all instructions
prior to the mispredicted branch to retire. This technique is or-
thogonal to EMR and EMR can also be improved by incorporat-
ing the WALK scheme. We refer to the combined technique as
EMR+WALK. As illustrated in Figure 9, the technique requires
some additional fields in the MMAP.

Py

P

MMAP f

F

0

1

1

...

Px

...

...

R8

In−order Tag

−−

Pa

R5

R9

Py

Px Py

Py Pxmov ,

update RSs

FU

Bf

S

1

1

1Pb

i

Speculative Tag R

0

0

1

head tail

. . .ROB

WALK

Px Pa

Figure 9: EMR+WALK

In order to repair the damaged speculative state in the MMAP,
EMR+WALK needs to restore the correct value for each damaged
register from the latest definition of the same logical destination
prior to the misprediction point. EMR+WALK walks from the mis-
predicted branch towards the head of the reorder buffer to retrieve
the latest definition information from each ROB entry. When a
definition ROB entry is scanned, it is the latest definition ofthe
speculative destination register prior to the misprediction point if
the correspondingS-bit (Speculative) is 1 and theF-bit (Found) is
0 in the MMAP. If this is the case, the renaming tag of the destina-
tion register is put into theIn−order Tag field and theF-bit is set.
After EMR+WALK walks to the head of the ROB, if there is any
entry withS = 1 andF = 0 left, its In−order Tag can be retrieved
from the retirement map table.

Since thisWALK process is independent from the retirement
logic, restoring correct values can be started as early as possible,
without waiting for all instructions prior to the mispredicted branch
to retire. Any entry in the MMAP withS = 1, F = 1 andR = 0
(Recovered) will trigger a move operation:In − order Tag −→
Speculative Tag, if the correct value is ready and there is a free
functional unit. After the correct value is restored, itsR-bit is set.

Since there can be multiple mispredictions in-flight simultane-
ously, multiple walk units are needed and the walk process ofyounger
misprediction may cross older ones. All make the implementation
complicated. To simplify the implementation, only one walkpro-
cess is allowed for the first pending misprediction. Once a mis-
prediction becomes the oldest one, its walk process and restoring
process can start immediately.

4. EXPERIMENTAL EVALUATION

4.1 Experimental Methodology
In order to evaluate the performance of EMR, we have collected

results from 17 benchmarks of the SPEC2000 benchmark suite.
To limit the simulation time, all benchmarks are run to comple-
tion using the reduced reference inputs from the MinneSPEC work-
load [13]. The benchmarks are compiled with the gcc 3.2.3 cross
compiler targeting the MIPS IV instruction set. Since we do not

have the appropriate cross-compiler, Fortran 90 and C++ bench-
marks in the SPEC2000 suite have been excluded. The architec-
tural simulators used in this study are written in the ADL language
[16] and automatically generated by theFAST simulation system.
Simulators model the basic superscalar pipeline shown in Figure 10
and are cycle accurate.

CommitFetch Decode
Rename

Wakeup
Select

Execute Memory
Access

ISSUE

WINDOW

D
is

am
bi

gu
at

or

M
em

or
y

Array

in
st

ru
ct

io
n

ca
ch

e

in
st

ru
ct

io
n

bu
ffe

rs

de
co

de
re

na
m

e
di

sp
at

ch
R

eg
is

te
r

F
ile

����
����
����
����

����
����
����
����

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�����������������
�����������������
�����������������
�����������������

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������

M
E

M
O

R
Y

Reorder and Commit

Functional

Unit

Figure 10: Machine Model

The parameters of the baseline model are shown in Table 1. Both
load and store instructions are allowed to issue out-of-order [6,
17] using the store set memory dependence predictor. Five mod-
els with different misprediction recovery mechanisms are evaluated
and compared:

1. RMAP, the traditional state-reconstructing method. A retire-
ment map table is used to restore the state.

2. RMAP+WALK, the optimization of the above method. With
the retirement map table, it walks from the head of ROB to-
wards to the misprediction point to restore the state.

3. EMR (M=i), our proposed fast misprediction recovery mech-
anism, which can handlei pending mispredictions.

4. EMR+WALK (M=i), the optimization of EMR, which is com-
bined with the WALK method.

5. UL CHK(UNLIMITED CHECKPOINTS), in which a check-
point is made with every branch. It can immediately restore
the correct state from the checkpoint when a misprediction is
detected.

We kept the above five machines identical in all aspects except
the branch misprediction recovery scheme. In two WALK mod-
els, RMAP+WALK and EMR+WALK, the walking step matches
the machine’s issue width, 8/cycle.

Parameter Configuration
Issue/Fetch/Retire width 8/8/8
Instruction window size 128
Reorder buffer size 256
Register file (unique) 256
Functional units Issue width Symmetric
Branch predictor 16K gshare
BTB 1024-entry
Return-address stack 32-entry
Dcache L1: 32KB, 4-way, 64B/line, 2 cycles

L2: 512KB, 8-way, 64B/line, 10 cycles
Memory 8B/line, 40 cycles first chunk,

4 cycles inter-chunk.

Table 1: Machine Configurations

47

4.2 Performance Results
The instructions per cycle (IPC) for each program in the bench-

mark suite using the 5 recovery models stated previously is shown
in Figure 11. EMR/+WALK are implemented usingM = 4, han-
dling at most 4 branch mispredictions simultaneously. We will dis-
cuss the selection of different values ofM in Section 4.3. As can
be seen from Figure 11, EMR outperforms the traditional RMAP
mechanism across all benchmarks, while EMR+WALK performs
better than RMAP+WALK. Furthermore, EMR+WALK performs
nearly as well as ULCHK.

To help understand the performance results for the 5 different
models, Figure 12 illustrates the percent speedup over RMAPof
the other four models. As shown in Figure 12, RMAP+WALK ob-
tains a 2.9% and 0.4% harmonic mean improvement over RMAP
on CINT2000 and CFP2000, respectively. EMR achieves a 4.7%
and 1.0% improvement over RMAP. Recall as discussed in Sec-
tion 3.5, the restoring process of EMR can be delayed significantly
due to some long latency operations, such as cache misses or float-
ing point operations. Long latency operations cause EMR to per-
form worse than RMAP+WALK on several CFP2000 benchmarks
and on 181.mcf, where the cache miss rate is relatively high.On the
other hand, EMR+WALK utilizes the advantage from the WALK
method and overcomes this shortcoming. Thus, it outperforms
RMAP+WALK across all benchmarks. As shown in Figure 12(a),
on the nine integer benchmarks, EMR+WALK outperforms RMAP
by an average of 9.0% with a maximum improvement of 19.9%
(175.vpr). The best method, ULCHK, improves the performance
by a harmonic mean of 10.2%. In other words, EMR+WALK
achieves(1+ 9.0%)/(1 + 10.2%) = 99% of the harmonic mean
performance of ULCHK.

Although EMR+WALK obtains a lower performance improve-
ment on CFP2000 compared to CINT2000, our technique obtains
an arithmetic mean improvement of 4.8% and a harmonic mean im-
provement of 1.3% on the eight CFP2000 benchmarks. As shown
in Figure 12(b), EMR+WALK achieves the same harmonic mean
performance as ULCHK. In most cases, floating-point programs
have relatively better branch prediction accuracies usingadvanced
branch prediction techniques. Therefore, they are less sensitive
than integer programs to the misprediction recovery mechanisms.

4.3 Misprediction-under-Misprediction
This section evaluates the performance of EMR/+WALK when

the number of allowed outstanding mispredictions varies. In order
to achieve a good trade-off between performance and the hardware
cost associated with the misprediction checkpoints, EMR imple-
mentations need to choose a reasonable value forM. Figure 13 il-
lustrates the respective performance of different EMR implementa-
tions where the number of misprediction maps is varied fromM = 1
to M = 16. We only present the harmonic mean IPC for our entire
suite of SPEC2000 benchmarks and omit the details of individual
benchmarks. As can be seen, both performance lines of EMR and
EMR+WALK have a steep gradient fromM = 1 to M = 2. Af-
ter each method reaches the valueM = 2, performance levels off.
Recall that the front-end is stalled when theith misprediction is
detected in EMR/+WALK withM = i. WhenM = 1, EMR and
EMR+WALK stall fetching new instructions until the currentmis-
prediction is recovered resulting in poor performance. As the value
of M is increased EMR and EMR+WALK can better hide the la-
tency of state recovery.

With a highly accurate branch predictor, the probability ofhav-
ing many mispredictions in succession diminishes. Under such cir-
cumstances allowing many mispredictions to be in-flight will not
provide significant performance improvements. As can be seen

M=1 M=2 M=4 M=8 M=12 M=16
The Number of In-flight Mispredictions

1.6

1.65

1.7

1.75

1.8

H
ar

m
on

ic
 M

ea
n

IP
C

EMR+WALK with M
EMR with M

Figure 13: Performance of EMR/+WALK with Different M

from Figure 13, selectingM = 4 provides the best trade-off between
performance and hardware complexity for both recovery models.
Using 4 checkpoints, EMR/+WALK can fully exploit its advantage.

Theoretical analysis verifies the experimental results. Inboth
EMR models, checkpoints are created only upon mispredictions. If
the number of in-flight branches isB, then

M = B∗misprediction rate.

In our experimental models, the number of total in-flight instruc-
tions is 256. Given that on an average every 3-5 instructionsa
branch is encountered,B is around 50. Assume that a gshare pre-
dictor, utilized in the experiment, has less than 10% misprediction
rate, thenM ≈ 4. In contrast, ULCHK would need about 50 check-
points as each branch would require a checkpoint. Our EMR mech-
anism roughly requiresmisprediction rate% of the hardware cost
of UL CHK while capturing 99% performance.

4.4 Towards a Large Instruction Window
This section studies the performance variation of the five re-

covery methods when the instruction window size and the reorder
buffer size increase. Figure 14 shows the harmonic mean IPCs
when the instruction window size varies from 32 to 256. To focus
the performance study on the misprediction recovery mechanism
exclusively, the physical register file size is kept idealized in this
group of experiments.

32/64 64/128 128/256 256/512
Instruction Window Size / Reorder Buffer Size

1.5

1.6

1.7

1.8

1.9

H
ar

m
on

ic
 M

ea
n

IP
C

UL_CHK
EMR+WALK (M=4)
EMR (M=4)
RMAP+WALK
RMAP

Figure 14: Performance of 5 Models with Different IW/ROB
sizes

As shown in Figure 14, all five models obtain performance im-
provement due to an increased instruction window size. However,
the strides of the improvement are not equal. As can be seen, the
performance gap between RMAP and ULCHK becomes larger as
instruction window size increases. The performance of RMAPre-
duces from 96% of the performance of ULCHK down to 93% as

48

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip

2

30
0.

tw
ol

f

A-m
ea

n

H-m
ea

n

0

1

2

3

4
IP

C

RMAP
RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

(a) SPEC2000 INT

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

30
1.

ap
si

A-m
ea

n

H-m
ea

n

0

1

2

3

4

5

IP
C

RMAP
RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

(b) SPEC2000 FP

Figure 11: Performance of five models

2.7

8.3

5.9
5.0

5.7
5.3

0.8

4.7

2.5

4.5

2.9
3.8

14.9

9.5

1.6

12.3

4.7

10.1

3.9
4.4

7.2

4.7
5.3

19.9

13.3

7.0

15.6

9.8
10.5

6.1

8.3

10.7

9.0

6.0

21.0

13.7

8.8

16.6

12.3

10.8

8.2 8.3

11.7

10.2

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
6.

bz
ip

2

30
0.

tw
ol

f

A-m
ea

n

H-m
ea

n

0%

4%

8%

12%

16%

20%

S
pe

ed
up

 O
ve

r
R

M
A

P

RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

(a) SPEC2000 INT

6.6

3.0

4.4

0.1 0.4

5.7

0.4

1.7

2.8

0.4
1.4

3.1 3.4

0.9
0.4

6.1

0.4

2.2 2.2

1.0

9.1

3.7

5.7

0.9
0.4

12.5

0.6

5.4
4.8

1.3

9.5

3.9

6.0

0.9
0.4

13.2

0.6

7.4

5.2

1.3

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

30
1.

ap
si

A-m
ea

n

H-m
ea

n

0%

4%

8%

12%

16%

20%

S
pe

ed
up

 O
ve

r
R

M
A

P

RMAP+WALK
EMR (M=4)
EMR+WALK (M=4)
UL_CHK

(b) SPEC2000 FP

Figure 12: Speedup of RMAP+WALK, EMR/+WALK (M=4) and UL CHK over RMAP

the instruction window size increases from 32 to 256. This phe-
nomenon indicates that misprediction recovery is more critical for
large instruction window processors. In contrast, EMR+WALK al-
ways achieves within 99% performance of ULCHK across all win-
dow sizes. EMR+WALK is more scalable than traditional state-
reconstructing recovery methods.

5. RELATED WORK
In [1, 2], Akkaryet al. use selective checkpoints at low-confidence

branches to recover from branch mispredictions. Selectivecheck-
pointing provides better scalability as the instruction window be-
comes larger. However, as the size of the instruction windowis
increased, the distance between a valid checkpoint and the current
instruction pointer increases, which in-turn increases the possibility
of re-executing already executed instructions since the confidence
estimator cannot be perfect.

Gandhiet al. [8] propose Selective Branch Recovery (SBR) to
reduce branch misprediction penalty by exploiting a frequently oc-
curring type of control flow independence, called exact conver-
gence. The results of some convergent instructions computed on
the mispredicted path can be reused. Thus, the recovery penalty
is reduced since those convergent instructions do not need to be
fetched/renamed again. Non-convergent instructions on the mis-
predicted path are re-issued as move operations. Each such move
operation copies the value from the previous renaming physical
register of its destination to its renaming physical register. Thus
the correct value of each logical destination is restored one by one
through the definition chain similar to EMR state recovery.

In [3], Aragonet al. analyze the performance loss due to branch
mispredictions. They break the misprediction penalty intothree

subcategories: pipeline-fill penalty, window-fill penalty, and seri-
alization penalty. They propose a Dual Path Instruction Process-
ing (DPIP) to reduce the pipeline-fill penalty. In DPIP, a low-
confidence branch is forked and both paths are fetched and re-
named, however, the alternative path is not executed. A checkpoint
of the map table is created upon the low-confidence branch to sup-
port the dual path processing. Thus, when a misprediction happens,
some instructions from the correct path have already been fetched
and renamed in the pipeline. DPIP can only fork once since only
two active paths are allowed at the same time.

A significant body of research has provided us with increasingly
better branch prediction accuracies [23, 15, 21, 5, 11]. Although
the type of branch predictor is orthogonal to the EMR technique,
EMR will provide diminishing returns as the accuracy of branch
prediction increases. Similarly, it provides significant performance
benefits as branch predictor accuracy decreases. EMR may tend to
blur the differences between different branch predictors and hence
may favor less accurate but faster branch predictors.

Armstronget al. [4] propose to reduce performance degradation
caused by branch misprediction. They propose a mechanism to
leverage wrong path events (WPEs), which occur during periods
of misprediction, such as a NULL pointer memory access. WPEs
can be used to detect whether a branch was mispredicted before it
is executed. Thus, the time for detecting misprediction is reduced.
When a wrong path event occurs, misprediction recovery can be
initiated early. Utilization of WPEs is orthogonal to EMR.

6. CONCLUSIONS
As pipeline depth increases, branch misprediction becomesa

primary bottleneck in obtaining high performance. We have pre-

49

sented a fast recovery mechanism, EMR, that reduces the latency of
branch mispredictions by immediately starting to process instruc-
tions from the correct target without waiting for the processor state
to be restored. Our technique stores the fine-grain processor state in
the checkpoint, MMAP, upon each misprediction and forwardsval-
ues to blocked instructions by using free functional units,making
EMR a complexity-effective approach.

EMR+WALK obtains an average performance speedup of 9.0%
over the traditional RMAP on CINT2000. Moreover, it achieves
99% of the performance obtained by an unlimited checkpoint re-
covery method using only 4 checkpoints.

7. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their comments. This work is supported in part by a NSF CAREER
award (CCR-0347592) to SonerÖnder.

8. REFERENCES
[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint

processing and recovery: Towards scalable large instruction
window processors. InProceedings of the 36th International
Symposium on Microarchitecture, pages 423–434, December
2003.

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan. An analysis ofa
resource efficient checkpoint architecture.ACM Transactions
on Architecture and Code Optimization, Volume 1:418–444,
December 2004.

[3] J. L. Aragon, J. Gonzalez, A. Gonzalez, and J. E. Smith.
Dual path instruction processing. InProceedings of the 2002
International Conference on Supercomputing, pages
220–229, June 2002.

[4] D. N. Armstrong, H. Kim, O.Mutlu, and Y. N. Patt. Wrong
path events: Exploiting unusual and illegal program behavior
for early misprediction detection and recovery. In
Proceedings of the 37th International Symposium on
Microarchitecture (MICRO-37), pages 119–128, Portland,
Oregon, 2004.

[5] I.-C. K. Chih-Chieh Lee and T. N. Mudge. The bi-mode
branch predictor. InThe 30th Annual IEEE-ACM
International Symposium on Microarchitecture, pages –,
December 1997.

[6] G. Z. Chrysos and J. S. Emer. Memory dependence
prediction using store sets. InProceedings of the 25th
International Conference on Computer Architecture, pages
142–153, June 1998.

[7] COMPAQ. Alpha 21264 microprocessor hardware reference
manual. July 1999.

[8] A. Gandhi, H. Akkary, and S. T. Srinivasan. Reducing branch
misprediction penalty via selective branch recovery.
Proceedings of the 10th International Symposium on
High-Performance Computer Architecture, pages 254–264,
February 2004.

[9] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the
pentium 4 processor. InIntel Technology Journal, February
2001.

[10] W. W. Hwu and Y. N. Patt. Checkpoint repair for
out-of-order execution machines. InProceedings of the 14th
Annual International Symposium on Computer Architecture,
pages 18–26, June 1987.

[11] D. A. Jimenez and C. Lin. Dynamic branch prediction with
perceptrons.Proceedings of the Seventh International

Symposium on High-Performance Computer Architecture,
pages 197–206, January 2001.

[12] M. Johnson.Superscalar Microprocessor Design. Prentice
Hall, 1991.

[13] A. KleinOsowski and D. J. Lilja. Minnespec: A new spec
benchmark workload for simulation-based computer
architecture research.Computer Architecture Letters,
Volume 1, June 2002.

[14] J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic, and
J. Torrellas. Cherry: Checkpointed early resource recycling
in out-of-order microprocessors. InProceedings of the 35th
International Symposium on Microarchitecture (MICRO-35),
pages 3–14, Istanbul, Turkey, November 2002.

[15] S. McFarling. Combining branch predictors. Technical
Report WRL-TN-36, Digital Western Research Laboratory,
1993.

[16] S.Önder and R. Gupta. Automatic generation of
microarchitecture simulators. InIEEE International
Conference on Computer Languages, pages 80–89, Chicago,
May 1998.

[17] S.Önder and R. Gupta. Dynamic memory disambiguation in
the presence of out-of-order store issuing. In32nd Annual
IEEE-ACM International Symposium on Microarchitecture,
pages 170 – 176, November 1999.

[18] S. Palacharla, N. P. Jouppi, and J. E. Smith. Quantifying the
complexity of superscalar processors. Technical Report
CS-TR-96-1328, University of Wisconsin Technical Report,
1996.

[19] D. Sima, T. Fountain, and P. Kacsuk.Advanced Computer
Architectures, A Design Space Approach.
ADDISON-WESLEY, 1997.

[20] E. Sprangle and D. Carmean. Increasing processor
performance by implementing deeper pipelines. In
Proceedings of the 29th Annual International Symposium on
Computer Architecture, pages 25–34, May 2002.

[21] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt. The
agree predictor:a mechanism for reducing negative branch
history interference. InProceedings of the 24th International
Conference on Computer Architecture, pages 284–291, 1997.

[22] K. C. Yeager. The mips r10000 superscalar microprocessor.
In IEEE Micro, pages 28–44, April 1996.

[23] T.-Y. Yeh and Y. N. Patt. Alternative implementations of
two-level adaptive branch prediction. InProceedings of the
19th International Conference on Computer Architecture,
pages 124–134, 1992.

50

