
A Tool for Demonstrating the Interaction among Lighting/Material

Parameters and Potential Problems in Polygon-Based Rendering

Tin-Tin Yu, John Lowther and Ching-Kuang Shene1

Department of Computer Science

Michigan Technological University

Houghton, MI 49931

Email: {tiyu,john,shene}@mtu.edu

ABSTRACT

This paper presents a tool PBR-Tutor for demonstrating the interaction among lighting and material

parameters and revealing commonly seen polygon-based rendering problems. PBR-Tutor is simple

and easy of use, and can be used by instructors in a classroom setting and by students for self study.

1. MOTIVATION

While each illumination model provides an explicit relationship of the lighting and material

parameters, the interaction among these parameters is so complex that cannot be described with simple

discussions. Moreover, strange rendering problems can occur due to the nature of polygon-based

rendering algorithms. Students may be confused, puzzled, or even surprised when strange results appear

in their images. The well-known computer scientist Tony Hoare once said: “You can't teach beginning

programmers top-down design because they don't know which way is up.” This also applies to

computer graphics because there are so many factors involved in the generation of an image and any

mistake would cause the image to become unusable. To address this issue, we must tell students which

1 Communicating author.

way is up. More precisely, before asking students to write their programs, we have to ensure they know

the relationship and the interaction among rendering parameters, and point out potential problems of

polygon-based rendering algorithms. While many introductory books discuss illumination models to

some degree [1, 4, 5, 6], only a few more advanced ones present the potential rendering problems [2, 8].

Hence, the authors developed PBR-Tutor (Polygon-Based Rendering Tutor) to demonstrate the

interaction among lighting and material parameters, and reveal some commonly seen polygon-based

rendering problems. With PBR-Tutor, students will be well-equipped and more confident before they

start writing their programs, and be able to verify their understanding by doing and visualization.

2. USER INTERFACE

 PBR-Tutor is designed to run on Windows, and its user interface is divided into three regions

(Figure 1). The top region has 11 icons that permit the user to select a demonstration scene and various

transformations; the left region has a number of slides to change rendering parameters; and, the

remaining region is the drawing canvas that displays the rendered result. The drawing canvas always

shows an object and a spotlight. The scene, the object, or spotlight can be translated and rotated.

Figure 1: User Interface

The top region contains 11 icons which are divided into three groups (Figure 2). Group A has

five icons for selecting a particular scene to demonstrate a rendering effect. Group B has three icons for

selecting the scene, the object, or the spotlight to be transformed. Group C has three icons which are

used to specify the type of transformations. Group C uses two icons to translate the selected item in the

xz-direction and y-direction, and one icon to rotate the selected item. Selected icons are highlighted.

Figure 2 shows that the selected item is the object and the selected transformation is rotation.

Figure 2: Tool Bar

Figure 3

The slides in Figure 3 allow the user to change various rendering

parameters. The Lighting/Material slides on the left column are used

to modify the ambient, diffuse, specular and shininess parameters.

Except for shininess, each term has three slides for the red, green and

blue color components. The Light Attenuation factor fatt is defined as

follows,

2
0 1 2

1min 1,attf
c c d c d

⎛ ⎞
= ⎜ ⎟+ +⎝ ⎠

Here, d is the distance between the light source and object, and c0, c1

and c2 are the constant, linear, and quadratic terms, respectively.

 The remaining items are for displaying purposes. The Preferences buttons allow the object on

the drawing canvas to be rendered with polygons (i.e., smooth shading), grid lines, grid points, or the

combination of any selections. Figure 1 shows the well-known Utah teapot with smooth shading, while

Figure 4 renders the same teapot with grid lines, grid points, and all three rendering selections.

Permitting a user to select from polygons, grid lines and grid points is important, because many

rendering problems require the knowledge of the edges and vertices of a polygon.

(a) Grid Lines (b) Grid Points (c) All

Figure 4

 The upper right corner has two items (Figure 3), the number of polygons (i.e., Tessellation) and

the light cone size (i.e., Spotlight Radius). The number of polygons plays an important role in

rendering polygons, not only because of reducing angular silhouettes but also because of its impact on

various odd rendered results. The light cone size (i.e., the radius of the shown finite wireframe cone)

also helps the user understand the interaction between light source and polygon rendering.

3. GOURAUD SHADING AND MACH BANDS

 Gouraud shading is the most commonly used method for polygon rendering. It requires vertex

normals. If the normal of a vertex is not available, it may be estimated by averaging the face normals of

all adjacent faces of that vertex. Gouraud shading uses a vertex and its normal vector to determine the

vertex intensity with the help of an illumination model. Then, each polygon is shaded using linear

interpolation of vertex intensities along each edge and then between edges along each scan line.

 A commonly seen problem with Gouraud shading is Mach bands. Mach bands, discovered by

the Austrian physicist Ernst Mach (1838 – 1916), refer to an illusion that variously emphasizes edges or

suggests edges in an image where the intensity change is smooth [3, page 29]. As a result, the common

edge of two polygons would look more evident or brighter/darker than necessary. Mach bands can be

very obvious even with Gouraud shading if the surface is approximated with a coarse tessellation.

Hence, students may consider the presence of Mach bands a programming mistake rather than a human

eye illusion. An instructor may use this tool to demonstrate and explain this effect.

 For example, selecting the first icon in Group A activates the scene that demonstrates Mach

bands. The drawing canvas shows a coarse tessellation of a sphere (Figure 5(a)). Mach bands are

clearly seen in the highlight area (i.e., the brighter edges from the center to the vertices of the highlight).

See also Figure 5(b), where the spotlight is rotated so that only a portion of the sphere is illuminated.

One may reduce Mach bands with a finer tessellation (Figure 5(c)). A finer tessellation may also

reduce angular silhouettes as in Figure 5(c); but, rendering time and memory consumption will increase.

(a) (b) (c)

Figure 5

4. INTERACTION BETWEEN LIGHT SOURCES AND POLYGON VERTICES

 Since Gouraud’s method computes the vertex intensity and uses linear interpolation to generate

colors along each edge from which the interior of a polygon is shaded, a polygon will not receive

illumination if the light source misses its vertices. This may cause problems if students use spotlights.

 By selecting the second icon of Group A, one sees a floor and a spotlight whose small light cone

misses all vertices in the scene. Hence, none of the rectangles receives illumination, and all of them are

black (Figure 6(a))! If the light cone is expanded a little so that the four vertices of the center rectangle

are illuminated, the rectangle is shaded properly (Figure 6(b)). Note that Mach bands are clear along the

rectangle edges and some diagonals (i.e., non-edges). The user may translate or rotate the light source

or change the light cone size to gain more experience.

(a) (b)

Figure 6: Interaction between Vertices and Light Source

 One may use this scene to demonstrate the impact of tessellation. Figure 7(a) is the same as

Figure 6 but with coarse tessellation. The spotlight does not generate a smooth circular area it

illuminates. By making the tessellation finer, the disk becomes smoother as in Figure 7(b). However,

its zigzag boundary cannot be completely eliminated.

(a) Coarse Tessellation (b) Fine Tessellation

Figure 7: Impact of Tessellation

5. POLYGONS WITH UN-SHARED VERTICES

 If adjacent polygons do not share a vertex on the common edge, shading discontinuity may occur.

Figure 8 has three rectangles I, II and III. Suppose rectangle I is defined by vertices A, B, F and G,

rectangle II by vertices B, C, D and H, and rectangle III by vertices H, D, E and F. Thus, vertex H is not

shared by rectangles I and II or by I and III, even though it is on the common edge BF. In this case,

shading discontinuity will occur at H and along the common edge.

Figure 8: Polygons with Un-Shared Vertices

 The cause of shading discontinuity is easy to explain. When dealing with rectangle I (Figure 8),

if B and F are not illuminated, edge BF is black, and all scan lines between edges AG and BF are also

black near edge BF. On the other hand, when dealing with rectangle II, if H is illuminated, the area

surrounding H in rectangle II is bright. This causes the neighborhood of H to be shaded differently in

different rectangles, and, hence, shading discontinuity occurs.

Selecting the third icon of Group A activates the demonstration of shading discontinuity. The

scene contains a coarse tessellation and a spotlight whose light cone only illuminates the two “interior”

vertices on the common edge (Figure 9(a)). As a result, the left rectangle is black because none of its

vertices receives illumination. The user may make the tessellation finer and/or the light cone larger, or

even rotate or translate the spotlight to see other discontinuity. As long as there are unshared vertices on

common edges, shading discontinuity may appear. Figure 9(b) is an example of finer tessellation.

(a) (b)

Figure 9: Shading Discontinuity

6. VERTEX NORMAL INACCURACIES

 Vertex normals are approximated by the average of the normals of all adjacent faces. This can

lead to flat shading even though the object is not flat. For example, Figure 10 shows an M-shaped

surface with face normals (solid). If the vertex normals (dashed) are computed by averaging, all would

point upward and are parallel with each other. As a result, if the light source is far enough, the object

will look flat without shading variation.

Figure 10: Averaging Normal Vectors

 By selecting the fourth icon of Group A, the impact of averaging face normals may be

demonstrated. The scene contains columns of “wavy” rectangles seen in Figure 10. Thus, all estimated

vertex normals are parallel to each other, and the object looks very flat (Figure 11(a)). In fact, without

the grid lines in Figure 11(b), the shaded result would look like a planar one as in Figure 6 and Figure 7.

(a) (b)

Figure 11: Shaded “Wavy” Polygons

7. LIGHTING AND MATERIAL PARAMETERS

The fifth icon of Group A activates this demonstration. The drawing canvas shows the Utah

teapot and a spotlight as shown in Figure 1. If the object icon (the second icon of Group B) is selected,

the slides are used to modify the Ambient, Diffuse, Specular, and Shininess material parameters.

The Tessellation item is disabled since the Utah teapot has a fixed number of vertices, edges and faces.

If the light icon (the third icon of Group B) is selected, these slides are used to modify lighting

parameters. Additionally, one may also change the light attenuation coefficients and the radius of the

spotlight; however, the Shininess slide is disabled.

Right click to show a matrix of spheres for attenuation factor experiments. Figure 12(a) shows

the result of c0 = 1 and c1 = c2 = 0 (Section 2), and there is no attenuation since the linear and quadratic

factors are zero. Figure 12(b) is the result of c0 = 0, c1 ≈ 0.3 and c2 ≈ 0, and spheres farther away are

darker than those closer to the light source. Instructors may use this demonstration to discuss the

interaction between lighting and material parameters, and students may gain experience in playing with

these parameters before writing their programs.

(a) c0 = 1, c1 = c2 = 0 (b) c0 = 0, c1 ≈ 0.3, c2 ≈ 0

Figure 12: Light Attenuation Factors

8. EXPERIENCE AND CONCLUSIONS

 PBR-Tutor grew out as an exercise in the authors’ computer graphics related courses. In the

past decade, the authors used local (i.e., OpenGL) and global (i.e., ray tracing) illumination models,

extensively. But, the interaction among lighting/material parameters and polygon rendering can be very

complex, and, in many situations, it is difficult to explain precisely what the effect is or is not. PBR-

Tutor is designed to avoid this confusion and to ensure the effects be precisely communicated to

students via a learning-by-doing and visualization approach. PBR-Tutor has been used for a number of

years in some graphics related courses. The main use is demonstrating the impact of lighting/material

parameters and explaining some major problems in polygon rendering so that with this visual

understanding students will be able to use lighting/material parameters properly and to avoid the

problems in polygon rendering. The impact of PBR-Tutor has been very positive because many

students felt that they have never thought about polygon rendering problems and in many cases

considered them as programming mistakes. PBR-Tutor is used in the discussion of the terms in

illumination models and in comparisons between local illumination using polygon-based rendering and

global illumination (e.g., ray tracing [7] and photon mapping [9]). Students were also asked to write a

similar program to demonstrate as many effects and problems as possible. In general, no student would

miss any problems discussed in this paper and some uncover more in their implementations. Some

students reported that this demonstration/exercise helps them understand lighting/material parameters

and recognize the problems of polygon-based rendering. In summary, the authors believe PBR-Tutor

is a useful tool for instructors to use in classroom and for student self study. Interested readers may find

PBR-Tutor and other useful components at the author’s site www.cs.mtu.edu/~shene/NSF-2.

ACKNOWLEDGMENT

 The work is partially supported by the National Science Foundation under grant DUE-0127401

and an IBM Eclipse Innovation Award 2003.

REFERENCES

1. Edward Angel, Interactive Computer Graphics: A Top-Down Approach Using OpenGL, fourth

edition, Addison Wesley, 2006.

2. James D. Foley, Andries van Dam, Steven K. Feiner and John F. Hughes, Computer Graphics:

Principles and Practice, second edition, Addison-Wesley, 1990.

3. Andrew S. Glassner, Principles of Digital Image Synthesis, Volume 1, Morgan Kaufmann, 1995.

4. Donald Hearn and Pauline Baker, Computer Graphics with OpenGL, third edition,

Pearson/Prentice Hall, 2004.

5. Francis S. Hill, Jr. and Stephen M. Kelley, Computer Graphics Using OpenGL, third edition,

Pearson/Prentice Hall, 2007.

6. Jeffrey J. McConnell, Computer Graphics: Theory into Practice, Jones & Bartlett, 2005.

7. Ching-Kuang Shene, Raytracing as a Tool for Learning Computer Graphics, ASEE/IEEE

Frontiers in Education, Vol. III, 2002, pp. (S4G-7)-(s4G-13).

8. Alan Watt and Mark Watt, Advanced Animation and Rendering Techniques: Theory and

Practice, The ACM Press, 1992.

9. Tin-Tin Yu, John Lowther and Ching-Kuang Shene, Photon-Mapping Made Easy, ACM 36th

Annual SIGCSE Technical Symposium, 2005, pp. 201-205.

