Computing with Geometry as an Undergraduate Course

John L. Lowther and Ching-Kuang Shene Michigan Technological University

Supported by the National Science Foundation under grants DUE-9653244 and CCR-9696084

Why Is It Important?

This is a geometric world
O Geometry plays a central role in many areas in computer science and engineering:
computer graphics, computer-aided design, geometric modeling, computer vision, manufacturing, robotics, GIS, ...

O The skill of handling geometric objects is virtually missing in a typical computer science curriculum

O The Computer Science and Telecommunication Board and National Research Council suggested that more continuous math should be taught in CS

Design Merit

O The underlying theme is

$$
\begin{aligned}
\text { Geometry } & \longrightarrow \text { Representation } \\
& \rightarrow \text { Algebra } \\
& \text { Algorithm } \\
& \text { Program }
\end{aligned}
$$

O Intuitive, less mathematical and elementary

Hands-on and learning-by-doing
O Using DesignMentor: A tool for teaching curve and surface design

Prerequisites: calculus and linear algebra

Unit 1: Course Overview

0The theme of this course
O The complexity of a geometric problem

Dimensional, analytic, combinatorial
The impact of float point calculation on geometric problems

Unit 2: Basic Geometric Concept

O Euclidean Geometry

Coordinate, Euclidean transformations and their matrices, quaternions

Affine Geometry

Affine transformations (e.g., scaling, shear) and their matrices, affine space

O Projective Geometry

The concept of points and lines at infinity, projective transformations and their matrices, projective space, cross-ratio
O Floating Point Computation
Lossing of significant digits, error cumulation, problems with commutative law and distributive law

Examples and Applications

Unit 3: Object Representations

O Wireframes:

Advantages, disadvantages, ambiguity

OBoundary Representations:

Manifolds, winged-edge representations, Euler-Poincare characteristic, Euler operators, non-manifolds

OConstructive Solid Geometry:

Interior, exterior and closure, regularized Boolean operators, CSG solid design

Unit 4: Parametric Curves and Surfaces

Polynomial and rational curves

O The moving triad

tangent, bi-normal, normal vectors
O Curvature and curvature sphere
O Singular and Inflection Points
O Tangential and Geometric Continuity
O The Meaning of Uniformization
Not all curves are polynomial
Discussions
Classification of conics using the line at infinity The proof of circle being non-polynomial

Unit 5: Bezier, B-spline and NURBS Curves

O Motivation and Important Properties:

 Control points, partition of unity, convex hull, variation diminishing and affine invariance
O Bezier Curves:

Construction, editing, de Casteljau's algorithm, derivatives, subdivision and degree elevation

B-spline Curves

B-spline basis, construction, local modification, strong convex hull, derivatives

NURBS Non-Uniform Rational B-Spline
Motivation, meaning of weights, NURBS basis, a NURBS curve as the projection of a 4D B-spline curve to 3D, infinite control points

Unit 6: Advanced Geometric Algorithms

O Knots Revisited The meaning of knots

Knot Insertion
Inserting a new knot without changing the shape of the curve, single insertion, multiple insertion

O De Boor's Algorithm
De Boor's algorithm via knot insertion, and de Casteljau's algorithm as a special case

Curve Subdivision
O Degree Elevation

Unit 7: Parametric, Bezier, B-Spline, and NURBS Surfaces

O Basic Concepts

Surface normal, tangent plane, naive surface triangulation, isoparametric curves, tensor product surfaces

O Bezier, B-Spline and NURBS Surfaces

Surface construction from two curves, 2D basis functions, 3D important properties from those of 2D, de Casteljau's and de Boor's algorithms for surfaces

A Twisted Sphere

Dini's Surface

Naive Surface Triangulation: Student Work

Unit 8: Cross-Sectional Design

O What is Cross-Sectional Design

 Creating surfaces using curves, profile and trajectory curves, compatible curves
O Cross-Sectional Design Surfaces

 Ruled surfaces, surfaces of revolution, swung surfaces, simple swept surfaces, and skinned surfaces
O Interpolation Surfaces

Swept surfaces via skinning, interpolating a curve network (i.e., Gordan surfaces)

Generating a surface of revolution

Unit 9: Algorithm Robustness

O Loss of Significant Digits

Imprecise input, cumulation of errors in geometric transformations and computation

O Various Computation Schemes

 Exact (Symbolic), Approximation, and Interval arithmetic
O Robust Algorithm Design

O Well-Known Experiments
Equation solvers, Sturm sequences, Dobkin's growing/shrinking pentagons, Euclidean transformations

Course Evaluation

O
 This elective course has been taught three times to junior/senior students

O The following is a student self assessment survey

	Mean	Var
Pre-Test	$\mathbf{1 7 . 8 0}$	7.83
Post-Test	$\mathbf{4 9 . 3 7}$	$\mathbf{6 . 0 7}$
Gain	$\mathbf{3 2 . 5 6}$	$\mathbf{8 . 8 1}$

\square Self assessment levels range from 0 (no understanding) to 4 (excellent understanding)
\square The average gain is statistically significant Students like the non-mathematical approach and our software tools

Results and Dissemination

Available Materials

A course electronic book, a software tool DesignMentor, a set of user guides and publications
http://www.cs.mtu.edu/~shene/NSF-2
Dissemination Statistics
\square

	Daily Avg
Course Info Page	9.8
Electronic Book	$\mathbf{1 3 . 0}$
Curve User Guide	5.3
Surface User Guide	$\mathbf{3 . 1}$

\square There are 900+ downloads of DesignMentor

\square| CS | Sci | Eng | EDU Other | COM | Other |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 28.7 | $\mathbf{3 . 0}$ | 7.7 | 11.1 | 26.9 | $\mathbf{2 1 . 6}$ |

N. Amer	S. Amer	Europe	Far East	Other
41.5	2.7	$\mathbf{3 8 . 5}$	$\mathbf{8 . 6}$	$\mathbf{8 . 7}$

Future Work

O Interpolation and Approximation Regular and scattered data

O Triangular Patches
Bezier triangles, triangular B-splines, and multi-sided patches

O Curve and Surface Interrogation

O Implicit Curves and Surfaces
O The Blossoming Principle
O Important Geometric Operations
Surfaces blending, curve and surface intersection, curve tracing, ...

