Computing with Geometry as an Undergraduate Course

John L. Lowther and Ching–Kuang Shene Michigan Technological University

Supported by the National Science Foundation under grants DUE–9653244 and CCR–9696084

Why Is It Important?

O This is a *geometric* world

• Geometry plays a central role in many areas in computer science and engineering:

computer graphics, computer-aided design, geometric modeling, computer vision, manufacturing, robotics, GIS, ...

- O The skill of handling geometric objects is virtually missing in a typical computer science curriculum
- The Computer Science and Telecommunication Board and National Research Council suggested that more *continuous* math should be taught in CS

Design Merit

O The underlying *theme* is

Geometry - Representation - Algebra - Algorithm - Program

O Intuitive, less mathematical and elementary

O Hands–on and learning–by–doing

Using DesignMentor: A tool for teaching curve and surface design

O Prerequisites: calculus and linear algebra

Unit 1: Course Overview

- O The *theme* of this course
- O The complexity of a geometric problem

Dimensional, analytic, combinatorial

O The impact of float point calculation on geometric problems

A poor equation solver can achieve this easily!!

Unit 2: Basic Geometric Concept

O Euclidean Geometry

Coordinate, Euclidean transformations and their matrices, quaternions

O Affine Geometry

Affine transformations (*e.g.*, scaling, shear) and their matrices, affine space

O Projective Geometry

The concept of points and lines at infinity, projective transformations and their matrices, projective space, cross-ratio

Floating Point Computation

Lossing of significant digits, error cumulation, problems with commutative law and distributive law

Examples and Applications

Unit 3: Object Representations

O Wireframes:

Advantages, disadvantages, ambiguity

OBoundary Representations:

Manifolds, winged-edge representations, Euler-Poincare characteristic, Euler operators, non-manifolds

Constructive Solid Geometry:

Interior, exterior and closure, regularized Boolean operators, CSG solid design

Student work on CSG Design

Unit 4: Parametric Curves and Surfaces

- **O** Polynomial and rational curves
- O The moving triad tangent, bi–normal, normal vectors
- **O** Curvature and curvature sphere
- **O** Singular and Inflection Points
- **O** Tangential and Geometric Continuity
- O The Meaning of Uniformization Not all curves are polynomial
- **O** Discussions

Classification of conics using the line at infinity The proof of circle being non-polynomial

Unit 5: Bezier, B–spline and NURBS Curves

O Motivation and Important Properties:

Control points, partition of unity, convex hull, variation diminishing and affine invariance

O Bezier Curves:

Construction, editing, de Casteljau's algorithm, derivatives, subdivision and degree elevation

O B–spline Curves

B–spline basis, construction, local modification, strong convex hull, derivatives

O NURBS Non–Uniform Rational B–Spline

Motivation, meaning of weights, NURBS basis, a NURBS curve as the projection of a 4D B–spline curve to 3D, infinite control points

Unit 6: Advanced Geometric Algorithms

Conversion Knots Revisited

The meaning of knots

Construction

Inserting a new knot *without* **changing the shape of the curve, single insertion, multiple insertion**

O De Boor's Algorithm

De Boor's algorithm via knot insertion, and de Casteljau's algorithm as a special case

Curve Subdivision

O Degree Elevation

Unit 7: Parametric, Bezier, B–Spline, and NURBS Surfaces

Basic Concepts

Surface normal, tangent plane, naive surface triangulation, isoparametric curves, tensor product surfaces

Bezier, B–Spline and NURBS Surfaces

Surface construction from two curves, 2D basis functions, 3D important properties from those of 2D, de Casteljau's and de Boor's algorithms for surfaces

A Twisted Sphere

Dini's Surface

Naive Surface Triangulation: Student Work

Unit 8: Cross–Sectional Design

O What is Cross–Sectional Design

Creating surfaces using curves, profile and trajectory curves, compatible curves

Cross–Sectional Design Surfaces

Ruled surfaces, surfaces of revolution, swung surfaces, simple swept surfaces, and skinned surfaces

Interpolation Surfaces

Swept surfaces via skinning, interpolating a curve network (*i.e.*, Gordan surfaces)

Generating a surface of revolution

Unit 9: Algorithm Robustness

O Loss of Significant Digits

Imprecise input, cumulation of errors in geometric transformations and computation

O Various Computation Schemes

Exact (Symbolic), Approximation, and Interval arithmetic

Robust Algorithm Design

O Well–Known Experiments

Equation solvers, Sturm sequences, Dobkin's growing/shrinking pentagons, Euclidean transformations

Course Evaluation

- O This elective course has been taught three times to junior/senior students
- O The following is a student self assessment survey

	Mean	Var
Pre–Test	17.80	7.83
Post–Test	49.37	6.07
Gain	32.56	8.81

- **17** questions were asked *before* and *after* the course
 - Self assessment levels range from 0 (no understanding) to 4 (excellent understanding)

The average gain is statistically significant

Students like the non-mathematical approach and our software tools

Results and Dissemination

O Available Materials

A course electronic book, a software tool **DesignMentor**, a set of user guides and publications

http://www.cs.mtu.edu/~shene/NSF-2

O Dissemination Statistics

	Daily Avg
Course Info Page	9.8
Electronic Book	13.0
Curve User Guide	5.3
Surface User Guide	3.1

(visitors)

There are 900+ downloads of DesignMentor

CS	Sci	Eng	EDU Other	COM	Other
28.7	3.0	7.7	11.1	26.9	21.6

N. Amer	S. Amer	Europe	Far East	Other
41.5	2.7	38.5	8.6	8.7

Future Work

O Interpolation and Approximation Regular and scattered data

O Triangular Patches

Bezier triangles, triangular B–splines, and multi–sided patches

O Curve and Surface Interrogation

O Implicit Curves and Surfaces

O The Blossoming Principle

O Important Geometric Operations

Surfaces blending, curve and surface intersection, curve tracing, ...