

Rafael Munoz-Salinas, Eugenio Aguirre, Miguel Garcia-Silvente.

In *Image and Vision Computing* Volume 25 Issue 6 (2007) 995-1007.

Presented by Reid Sawtell



#### Introduction

The system presented by this paper is designed to take advantage of newer stereo cameras to improve person detection and tracking. Additionally, color information is used to create a more robust tracking system. Finally, all of this must be done quickly so the system can be used in real time applications.

# Overview

- Design Specifications
- Building the Environment
  - Stereo Processing
  - Background
  - Foreground
- Detecting and Tracking People
  - Division of Tasks
  - Color Modeling
  - Detecting People
  - Tracking People
- Experimental Results
- Future Work



#### **Design Specifications**

- Stereo camera system (instead of the popular single camera system)
- Color information is used to improve tracking reliability
- Under-head camera position

# Why Stereo?

- The price has decreased and availability has increased
- The added depth information allows for more accurate detection and tracking
  - Foreground objects can be separated from background objects
  - Can filter objects to reduce false positives
  - Added filtering also reduces the need to apply costly face detection



#### Why use color?

- Systems based only on position can easily confuse objects in close proximity
- Luminance can vary greatly from one location to another



- Camera position is problem dependent
- It can be mounted on mobile platforms
- It is ideal for gesture recognition
- Smaller robots are less intimidating

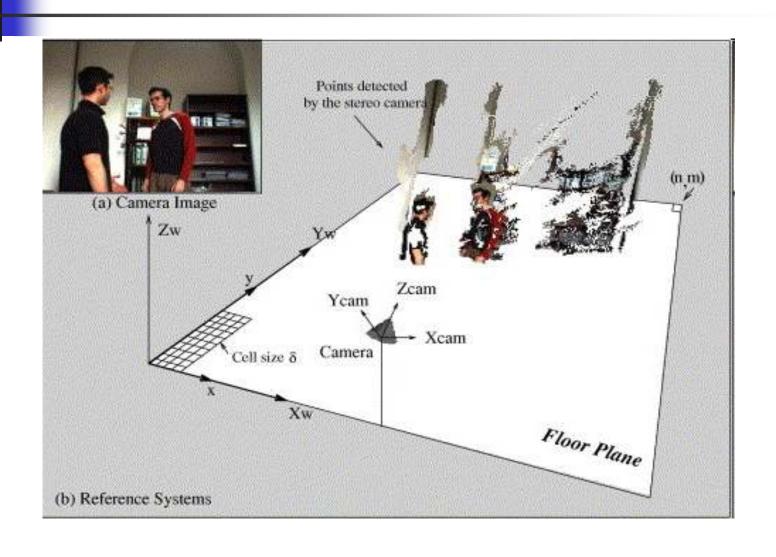


#### **Building the Environment**

- Stereo Processing
- Background Modeling
- Foreground Extraction



#### Stereo Processing

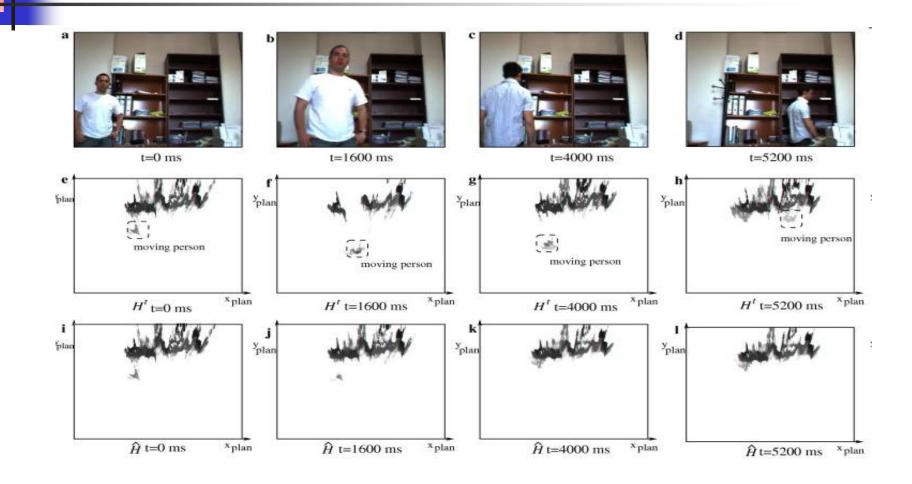

- Stereo System provides a disparity map
- Pixel location is calculated using known parameters
- Points are translated into a world model, which is likely to contain large volumes of data



#### Simplifying the Model

- 3D data is projected onto a 2D surface composed of uniform cells with height information
- Cell size must be carefully selected to balance memory/performance and reliability
- Filter points based on height to exclude ceiling or floor.

#### Scene reconstruction



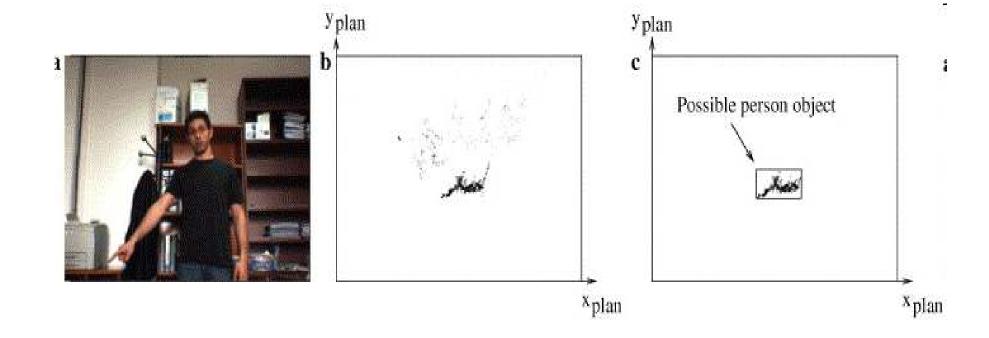



#### **Background Modeling**

- People move, so separating them from the background is advantageous
- The heightmap is a model of the environment people move through
- Generating a reliable heightmap cannot be done instantaneously
- Must be updated more frequently than people are detected and tracked

# Generating the heightmap over time






#### **Detecting Foreground Objects**

- Foreground points are easily isolated using the heightmap
- Occupancy map shows the distribution of foreground points over the scene
- Points are scaled based on proximity to camera
- A person is likely to be found in areas with high occupancy



### Occupancy Map

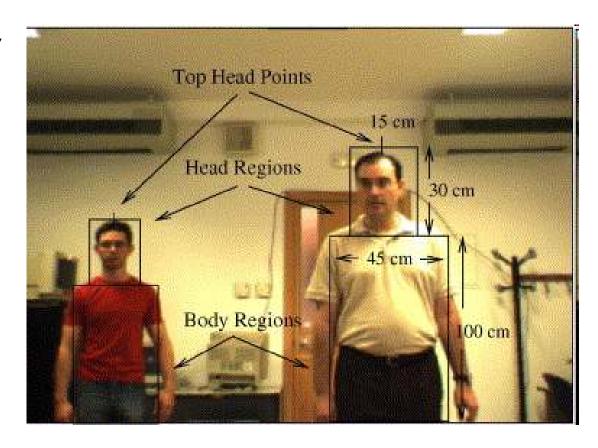




#### Detecting and Tracking People

- Division of Tasks
- Color Modeling
- Detecting People
- Tracking People



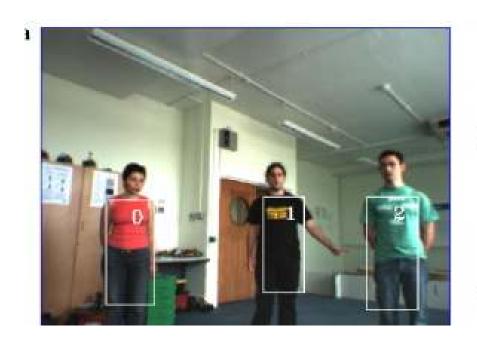

#### **Division of Tasks**

- Face detection is computationally costly
- Tracked people can first be assigned to objects detected in a scene
- Remaining objects can then be studied as possible candidates for new people



#### How objects are Classified

- Generate a 'head' region based on highest point in occupancy map
- Place a 'body' region underneath the head region





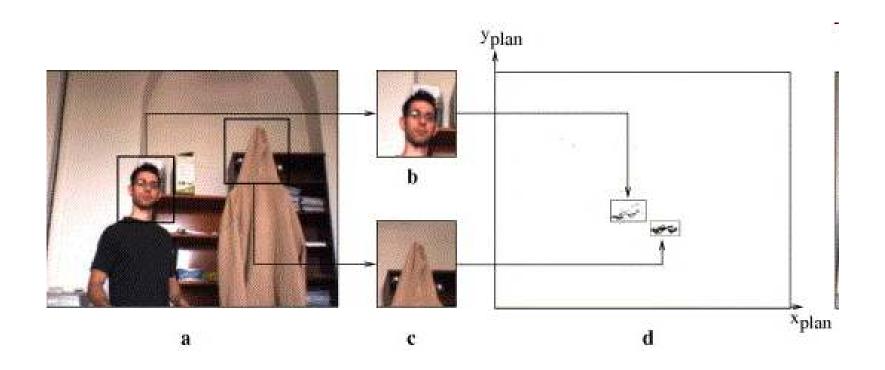

#### **Modeling Color**

- The color of each object is modeled as a histogram
- Some illuminance information is held since color is not reliable at extreme values
- Pixels near the center are given more weight to reduce error
- Color models can be compared to compute a similarity value
- Color model for a tracked object is updated over time





| b | 0     | 1     | 2     |   |
|---|-------|-------|-------|---|
| 0 | 1     | 0.492 | 0.655 | _ |
| 1 | 0.492 | 1     | 0.282 |   |
| 2 | 0.655 | 0.282 | 1     |   |

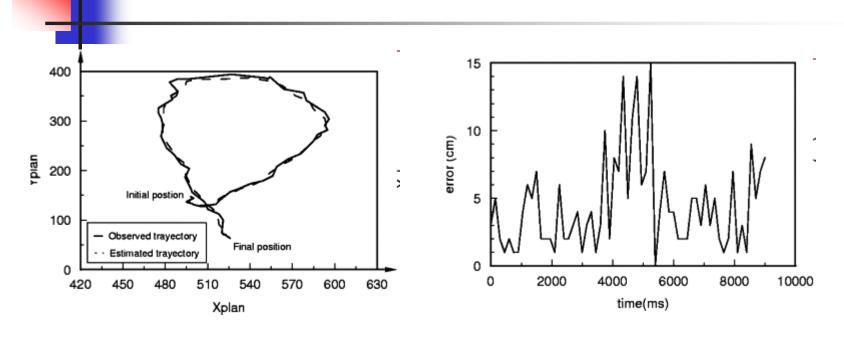



#### **Detecting People**

- Detected object not associated with tracked people may be new people in the scene
- Each head region is analyzed to determine if it is similar to a human head
  - If it is, apply face detection based on common library routines, ignore it otherwise
  - Pruning of regions reduces computational cost and occurrence of false positives



## **Identifying People**






#### Tracking People

- Once a person is detected, they must be tracked
- Assign tracked people to detected objects using Kuhn's Hungarian Method
- Color similarity and estimated position from the Kalman Filter are used to compute how likely each object is a given person
  - Color similarity is important when people are in close proximity
- If a person is not detected for some time, they are removed from the list

# Estimating Position with the Kalman Filter



- Even though the filter uses a linear movement model, it works well because the time interval is small
- Worst error occurs when people turn



#### **Experimental Setup**

- Used 320\*240 resolution images
- Operational frequency is 10Hz on a 3.2 Ghz Pentium 4 laptop
- Configured to detect people between .5 and 2.5 meters
- Cameras with 4mm and 6mm focal lengths are used
- Number of people vary from 2 to 4
- People interact in a variety of ways to try and trick the system into confusing them
- Tests were run with and without the use of color modeling



- In every test case, the use of color modeling improved tracking success rate
- The 6mm camera could not track as many people as the 4mm camera
- Increasing the number of people decreases the success rate of tracking, especially when color is not used
- The use of color may allow the system to correct itself once the interacting people have separated

## Example Scene





















### Tracking Success

| #People | f(mm) | #conflicts | #NC<br>(%) | #c<br>(%) |
|---------|-------|------------|------------|-----------|
| 2       | 6     | 30         | 86         | 100       |
| 3       | 6     | 17         | 58         | 82        |
| 3       | 4     | 52         | 69         | 100       |
| 4       | 4     | 13         | 50         | 100       |



#### **Future Work**

- Use multi-scale techniques when creating the height and occupancy maps
- Avoid the use of a unique cell size in hopes of improving success without hurting performance
- Use additional features aside from color and position to distinguish objects, such as face identification
- Test the system on a mobile platform such as an autonomous robot