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•Robots should be able to learn how to behave in a 
real-world environment

•Knowledge based and symbol manipulative AI 
systems are not flexible enough. Behavior based 
systems  may be a better approach.

•Natural Systems have learned to adapt, and this 
led to neural learning, which is flexible and 
powerful

•The paper deals with genetic machine learning 
and behavior based robotics

Overview



  

The layout of a genetic learning machine



  

•  Rules  are  strings  of  symbols  over  a  three-valued  alphabet  (A ={0,1,*}) 
 with  a condition→action  format  (in  their  each  rule  has  two  conditions 
that  have  to  be simultaneously satisfied in order to activate the rule)

•  A limited number of rules fire in parallel.

•  A pattern-matching and conflict-resolution subsystem identifies which rules 
are active in each cycle and which of them will actually fire.

Genetic Setup



  

Structure of the System



  

•   A set of rules, called classifiers.
•   A message list, used to collect 
messages sent from classifiers and 
from the environment to
other classifiers.
•   An  input  and  an  output  interface 
 with  the  environment  (detectors  
and  effectors)  to
receive/send messages from/to the 
environment.
•   A feedback mechanism to reward 
the system when a useful action is 
performed and to punish
it when a wrong action is done.

Performance System



  

•   A classifier (rule) is a string composed of three chromosomes, two chromosomes 
being the condition  part, the third one being the message/action part; we will call a 
classifier an external  classifier if it sends messages to the effectors, an internal  
classifier if it sends messages to other classifiers.

•   A chromosome is a string of n positions; every position is called a gene.

•   A gene can assume a value, called allelic  value, belonging to an alphabet that is 
usually A={0,1,*}. 

Terminology



  

 *1*;011->010

If the message matches both 
conditions, then the action part is 
appended to the message stream.

Condition Condition Action

Example Classifier



  

Overview of the algorithm

The algorithm works by feeding the messages through the classifiers in order 
to  get an action output. Depending on the results of the action, the system is 
either reinforced or punished. It will weight the different classifiers depending 
on their involvement in the end action. They are then recombined in order to 
preserve the critical classifiers that lead to the proper output and change the 
classifiers that lead to improper output.



  

Behavior Based Learning
Behavior based learning is based on the assumption that cognition arises from 
trying to impose order on a dynamically changing unstructured environment. The 
structures it develops are the foundation of high-level thought and action.

These structures did not exist in early life, but developed over time. They are 
trying to mimic this process in order to achieve robotic intelligence.

Most approaches to this problem have been very structured and engineered. 
They believe that such attempts are doomed to failure, since they can be well-
designed for a particular situation, but a general solution has not been found.



  

Instinct Centers

They operate under the  Tinbergen 
model of animal behavior , which his 
'Instinct centers' which get activated, 
each of which I composed of finer 
grained behavior sequences. At any 
level, only the center that is the most 
active can activate the levels below 
it. 



  

The Complete Model
There are many classifier systems running in parallel. Each classifier learns a 
single task, and the system as a whole learns to coordinate the tasks. Low level 
classifiers have direct access to the robots sensors and motors, and high level 
classifiers operate on lower-level classifiers. 
The classifiers are added if the robot 
encounters a novel situation. The 
weighted sum of the outputs of the 
classifiers are used to determine the 
actual motor outputs



  

Simulation Vs. Testing
A system like this needs to be tested, and that test can be done via 
simulation or by using an actual robot.

A simulation is much faster, but the sensor input is dry and you have a 
structured environment, which is contrary to their goal. 

A robot allows real-world situations to be explored but the testing is much 
slower. They maintain that real-world interactions are key to developing a 
working system

They settle on initial simulation and later testing on a real robot



  

Rob1

Omnidirectional Movement

Four light sensors, each returning 0 or 1

Four heat sensors, each returning 0 or 1

4bit output to specify motion

Designed to learn how to follow light, then learn how to avoid hot objects, then 
learn how to reconcile contradictory inputs, such as following a light while 
avoiding a hot object, or following two lights



  

Rob2

Omnidirectional Movement

Four light sensors, each returning 0 or 1

Food sensor, with input matching the light sensor

Predator Sensor, with input matching the light sensor

4bit output to specify motion

It had to follow 3 directives at the same time; follow light, find and eat food, avoid 
predators



  

Following a light source

After 250 cycles, the robot 
had good performance, and 
learned the system by 900 
cycles.

The robot was simulated to 
follow a light source that was 
circling.



  

Testing the internal model
In order to verify that the robot has an internal world model, they performed 
variations of the experiment to show that it was doing more than coupling 
inputs to outputs.

They did three experiments to test this:

First, they made the light move faster than the robot.

Second, they made the light move on a random path instead of a circle

Third, after the robot learned the circular path, they changed the path to a 
rectangle



  

Faster Light
When they adjusted the speed of the light so it was faster than the robot, the 
robot started taking shortcuts. This implies an internal model because if it 
was operating off basic sensor-motor mapping, it will try to follow the light 
directly. The fact that it can take a shortcut shows that it has enough 
awareness of the situation to react to it.



  

Erratic Path
The robot had a harder time following a random light source than the circular 
one. The reason proposed is that in a a slowly changing system, positive 
actions have more time to be reinforced. This is the case with the circular path, 
but that cannot be exploited with a random path, so learning is more difficult.



  

Rectangular Path
When they froze the learning algorithm and changed the shape of the 
path, they saw a performance decrease. They achieved better results 
when they left the learning algorithm in place. They do not consider this 
definitive because the learning system is a dynamic structure, and 
freezing it can end up in a suboptimal configuration



  

Discussion of the first experiment

The robot behavior appears to be more precise than would be expected, 
considering the output is more fine-grained than the input.  

Whether an internal model is present or not is not certain. They tries setting the 
message length to one, forcing it to act as a input-< output mapper, and there was 
no significant difference.

More complex systems are needed to figure out if an internal model can be 
present



  

Summable actions
The next experiment they tested was to have two inputs that needed to be 
summed together to get the correct  behavior, by avoiding a heat source while 
following a light, or minimizing the distance between two lights. 

These are considered summable because they can both be simultaneously 
active, and the results of each can be summed to determine the correct course 
of action 



  

The Light-Heat source setup
For this experiment, they add a heat 
source to the setup that the robot must 
avoid. The heat source is placed on 
the light's path to make it more difficult 
for the robot. 



  

Light-Heat architecture 

The system is designed with two 
subsystems to handle the heat 
avoidance and the light following, 
which operate in parallel, and a 
coordinator to combine the two 
outputs in a single action.



  

Results

The results of this experiment were 
very promising. The robot displayed 
the desired behavior; it would follow 
the light in a circle until it got to the 
heat source, then it would either go 
around the heat source or wait until 
the light is past it and resume 
following it.



  

Two Lights
The setup for the two lights system 
in different. The robot is equipped 
with two sets of the light sensors, 
each of which can only see one 
light. The sensors will return both 
the direction and the distance to 
both lights, so the robot can try to 
minimize the distance to both. 

Part of this experiment is to try 
different problem architectures. There 
are flat, vectorial, and hierarchical.



  

Problem Structures

Flat- The entire system has to be learned by a single LCS

Vectorial- Both inputs are learned by a separate LCS, then the results are 
combined with a Vectorial unit, instead of a LCS. 

Hierarchical- this is the same structure that was used in the heat-light problem 
space. 



  

Results

The flat architecture performed poorly, because the number of possible inputs 
was exponentially large. The Vectorial system performed well, especially 
initially, since the system did not have to learn ow to combine the inputs, the the 
Hierarchical structure learned a slightly more efficient method in the end.



  

Three separate tasks
The final test was to use rob2, which had three separate tasks to perform.

It had to follow the light, avoid a predator, and find food. These are often 
contradictory goals, so it has to be able to choose which one to do.

The LCS for each system must be implemented separately, then a higher level LCS 
will act as a switch to determine which one to follow.



  

Clarifying the problem

The high level LCS receives 3-bit inputs, which tell it whether each sub LCS is 
proposing an action. 

The high level LCS is supposed to coordinate which one is active: predator takes 
priority, then the other two are decided.

There are many ways to let the system learn, they used two; letting it learn 
contemporaneously, or to train the low level LCS then freeze them, and learn the 
high level LCS.

They will measure both flat performance, which is the performance of a 
subsystem while active, and global performance, which is the performance of the 
system as a whole.



  

Flat architecture
The flat architecture takes in all the inputs into one LCS, which determines the 
behavior. Escaping a predator is easy because there are more directions away 
from something than toward it in a 2d space. Finding food is the most difficult task



  

Concurrent Learning

Contemporaneously learning 
the system yielded individual 
performance similar to that of 
the flat learning system, and 
the overall performance is 
slightly lower, most likely 
because of noise in the 
reward function.



  

Two Phase Reward Policy

The performance with 
the two-phase system 
is much better than the 
concurrent learning. It 
let the individual TCLs 
learn till they are good, 
then locking them 
while the switch 
learns. The results are 
better in performance 
and cycles to learn.



  

Conclusion
This paper showed that a learning system can learn basic behaviors, and can 
learn how to combine them to create more complicated behavior. They showed 
that the method used to train the system makes a significant difference in how 
fast and how well it can learn its behavior.

The adaptability of such a system to more complex behaviors is possible in 
theory, and works much better than a rigid system. They did not implement their 
complete system fully, so its full potential has not been tested, but working as a  
subset of it it shows potential.

They did later research in applying this to practical applications, such as 
controlling a robotic arm, and it worked well, except they did not have a high 
enough data transfer rate between their hardware components, so dealing with 
moving objects was not possible. Besides this technical shortcoming the system 
worked remarkably well.
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