

Genetics-based Machine
Learning

and Behaviour Based
Robotics:

A New Synthesis
Genetics-based Machine Learning and Behavior Based Robotics:

A New Synthesis, Marco Dorigo, Uwe Schnepf,
IEEE Transactions on System, MAn, and Cybernetics,

 23, 1, 141-154, January 1993

Dean Carpenter

•Robots should be able to learn how to behave in a
real-world environment

•Knowledge based and symbol manipulative AI
systems are not flexible enough. Behavior based
systems may be a better approach.

•Natural Systems have learned to adapt, and this
led to neural learning, which is flexible and
powerful

•The paper deals with genetic machine learning
and behavior based robotics

Overview

The layout of a genetic learning machine

• Rules are strings of symbols over a three-valued alphabet (A ={0,1,*})
 with a condition→action format (in their each rule has two conditions
that have to be simultaneously satisfied in order to activate the rule)

• A limited number of rules fire in parallel.

• A pattern-matching and conflict-resolution subsystem identifies which rules
are active in each cycle and which of them will actually fire.

Genetic Setup

Structure of the System

• A set of rules, called classifiers.
• A message list, used to collect
messages sent from classifiers and
from the environment to
other classifiers.
• An input and an output interface
 with the environment (detectors
and effectors) to
receive/send messages from/to the
environment.
• A feedback mechanism to reward
the system when a useful action is
performed and to punish
it when a wrong action is done.

Performance System

• A classifier (rule) is a string composed of three chromosomes, two chromosomes
being the condition part, the third one being the message/action part; we will call a
classifier an external classifier if it sends messages to the effectors, an internal
classifier if it sends messages to other classifiers.

• A chromosome is a string of n positions; every position is called a gene.

• A gene can assume a value, called allelic value, belonging to an alphabet that is
usually A={0,1,*}.

Terminology

 1;011->010

If the message matches both
conditions, then the action part is
appended to the message stream.

Condition Condition Action

Example Classifier

Overview of the algorithm

The algorithm works by feeding the messages through the classifiers in order
to get an action output. Depending on the results of the action, the system is
either reinforced or punished. It will weight the different classifiers depending
on their involvement in the end action. They are then recombined in order to
preserve the critical classifiers that lead to the proper output and change the
classifiers that lead to improper output.

Behavior Based Learning
Behavior based learning is based on the assumption that cognition arises from
trying to impose order on a dynamically changing unstructured environment. The
structures it develops are the foundation of high-level thought and action.

These structures did not exist in early life, but developed over time. They are
trying to mimic this process in order to achieve robotic intelligence.

Most approaches to this problem have been very structured and engineered.
They believe that such attempts are doomed to failure, since they can be well-
designed for a particular situation, but a general solution has not been found.

Instinct Centers

They operate under the Tinbergen
model of animal behavior , which his
'Instinct centers' which get activated,
each of which I composed of finer
grained behavior sequences. At any
level, only the center that is the most
active can activate the levels below
it.

The Complete Model
There are many classifier systems running in parallel. Each classifier learns a
single task, and the system as a whole learns to coordinate the tasks. Low level
classifiers have direct access to the robots sensors and motors, and high level
classifiers operate on lower-level classifiers.
The classifiers are added if the robot
encounters a novel situation. The
weighted sum of the outputs of the
classifiers are used to determine the
actual motor outputs

Simulation Vs. Testing
A system like this needs to be tested, and that test can be done via
simulation or by using an actual robot.

A simulation is much faster, but the sensor input is dry and you have a
structured environment, which is contrary to their goal.

A robot allows real-world situations to be explored but the testing is much
slower. They maintain that real-world interactions are key to developing a
working system

They settle on initial simulation and later testing on a real robot

Rob1

Omnidirectional Movement

Four light sensors, each returning 0 or 1

Four heat sensors, each returning 0 or 1

4bit output to specify motion

Designed to learn how to follow light, then learn how to avoid hot objects, then
learn how to reconcile contradictory inputs, such as following a light while
avoiding a hot object, or following two lights

Rob2

Omnidirectional Movement

Four light sensors, each returning 0 or 1

Food sensor, with input matching the light sensor

Predator Sensor, with input matching the light sensor

4bit output to specify motion

It had to follow 3 directives at the same time; follow light, find and eat food, avoid
predators

Following a light source

After 250 cycles, the robot
had good performance, and
learned the system by 900
cycles.

The robot was simulated to
follow a light source that was
circling.

Testing the internal model
In order to verify that the robot has an internal world model, they performed
variations of the experiment to show that it was doing more than coupling
inputs to outputs.

They did three experiments to test this:

First, they made the light move faster than the robot.

Second, they made the light move on a random path instead of a circle

Third, after the robot learned the circular path, they changed the path to a
rectangle

Faster Light
When they adjusted the speed of the light so it was faster than the robot, the
robot started taking shortcuts. This implies an internal model because if it
was operating off basic sensor-motor mapping, it will try to follow the light
directly. The fact that it can take a shortcut shows that it has enough
awareness of the situation to react to it.

Erratic Path
The robot had a harder time following a random light source than the circular
one. The reason proposed is that in a a slowly changing system, positive
actions have more time to be reinforced. This is the case with the circular path,
but that cannot be exploited with a random path, so learning is more difficult.

Rectangular Path
When they froze the learning algorithm and changed the shape of the
path, they saw a performance decrease. They achieved better results
when they left the learning algorithm in place. They do not consider this
definitive because the learning system is a dynamic structure, and
freezing it can end up in a suboptimal configuration

Discussion of the first experiment

The robot behavior appears to be more precise than would be expected,
considering the output is more fine-grained than the input.

Whether an internal model is present or not is not certain. They tries setting the
message length to one, forcing it to act as a input-< output mapper, and there was
no significant difference.

More complex systems are needed to figure out if an internal model can be
present

Summable actions
The next experiment they tested was to have two inputs that needed to be
summed together to get the correct behavior, by avoiding a heat source while
following a light, or minimizing the distance between two lights.

These are considered summable because they can both be simultaneously
active, and the results of each can be summed to determine the correct course
of action

The Light-Heat source setup
For this experiment, they add a heat
source to the setup that the robot must
avoid. The heat source is placed on
the light's path to make it more difficult
for the robot.

Light-Heat architecture

The system is designed with two
subsystems to handle the heat
avoidance and the light following,
which operate in parallel, and a
coordinator to combine the two
outputs in a single action.

Results

The results of this experiment were
very promising. The robot displayed
the desired behavior; it would follow
the light in a circle until it got to the
heat source, then it would either go
around the heat source or wait until
the light is past it and resume
following it.

Two Lights
The setup for the two lights system
in different. The robot is equipped
with two sets of the light sensors,
each of which can only see one
light. The sensors will return both
the direction and the distance to
both lights, so the robot can try to
minimize the distance to both.

Part of this experiment is to try
different problem architectures. There
are flat, vectorial, and hierarchical.

Problem Structures

Flat- The entire system has to be learned by a single LCS

Vectorial- Both inputs are learned by a separate LCS, then the results are
combined with a Vectorial unit, instead of a LCS.

Hierarchical- this is the same structure that was used in the heat-light problem
space.

Results

The flat architecture performed poorly, because the number of possible inputs
was exponentially large. The Vectorial system performed well, especially
initially, since the system did not have to learn ow to combine the inputs, the the
Hierarchical structure learned a slightly more efficient method in the end.

Three separate tasks
The final test was to use rob2, which had three separate tasks to perform.

It had to follow the light, avoid a predator, and find food. These are often
contradictory goals, so it has to be able to choose which one to do.

The LCS for each system must be implemented separately, then a higher level LCS
will act as a switch to determine which one to follow.

Clarifying the problem

The high level LCS receives 3-bit inputs, which tell it whether each sub LCS is
proposing an action.

The high level LCS is supposed to coordinate which one is active: predator takes
priority, then the other two are decided.

There are many ways to let the system learn, they used two; letting it learn
contemporaneously, or to train the low level LCS then freeze them, and learn the
high level LCS.

They will measure both flat performance, which is the performance of a
subsystem while active, and global performance, which is the performance of the
system as a whole.

Flat architecture
The flat architecture takes in all the inputs into one LCS, which determines the
behavior. Escaping a predator is easy because there are more directions away
from something than toward it in a 2d space. Finding food is the most difficult task

Concurrent Learning

Contemporaneously learning
the system yielded individual
performance similar to that of
the flat learning system, and
the overall performance is
slightly lower, most likely
because of noise in the
reward function.

Two Phase Reward Policy

The performance with
the two-phase system
is much better than the
concurrent learning. It
let the individual TCLs
learn till they are good,
then locking them
while the switch
learns. The results are
better in performance
and cycles to learn.

Conclusion
This paper showed that a learning system can learn basic behaviors, and can
learn how to combine them to create more complicated behavior. They showed
that the method used to train the system makes a significant difference in how
fast and how well it can learn its behavior.

The adaptability of such a system to more complex behaviors is possible in
theory, and works much better than a rigid system. They did not implement their
complete system fully, so its full potential has not been tested, but working as a
subset of it it shows potential.

They did later research in applying this to practical applications, such as
controlling a robotic arm, and it worked well, except they did not have a high
enough data transfer rate between their hardware components, so dealing with
moving objects was not possible. Besides this technical shortcoming the system
worked remarkably well.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

