Generating Useful Network-based Features for Analyzing Social Networks

Jun Karamon, Yutaka Matsuo and Mitsuru Ishizuka University of Tokyo

Published in Proc. of AAAI 2008 Presented by: Congyi Liu

OUTLINE

Introduction

Related Works

Methodology

Experiment Result

Discussion and Conclusion

Social Network

- Interaction among users creates a social network among users. Many efforts are underway to analyze user intersections by analyzing social networks among users.
- Link-based classification: classifying samples using the relations and links that are present among them.
- Link prediction: predicting whether there would be a link between a pair of nodes (in the future) given the (previously) observed links.

Motivation

Motivation: Greater potential exists for new features using a network structure.

Problems:

- Numerous methods exist to aggregate features for linkbased classification and link prediction;
- The network structure among users influences each user differently;
- It is difficult to determine useful feature aggregation in advance.

Contribution

Propose an algorithm to identify important networkbased features systematically from a given social network to analyze user behavior efficiently.

- **Define general operators** that are applicable to the social network;
- The combinations of the operators provide different features;
- Using the datasets, @cosme and Hatena Bookmark, the performance of link-based classification and link prediction increase compared to existing approaches.

Features used in Social Network Analysis

- Density: the number of edges in a (sub-)graph, expressed as a proportion of the maximum possible number of edges.
- Centrality measures: measure the structural importance of a node, e.g. the power of individual actors.
- Characteristic path length: the average distance between any two nodes in the network (or a component of it).
- Clustering coefficient: the ratio of edges between the nodes within a node's neighborhood to the number of edges that can possibly exist between them.
- □ Structural equivalence, structural holes...

Other Features used in Related Works

Features used in link-based classification

Number of friends in a community Number of adjacent pairs in SNumber of pairs in S connected via a path in E_C Average distance between friends connected via a path in E_C Number of community members reachable from S using edges in E_C Average distance from S to reachable community members us-

ing edges in E_C

- S denotes the set of friends of an individual.
- E_c denotes the set of edges in the community C.

Features used in link prediction

name	feature
graphic distance	d_{XV}
common neighbors	$ \Gamma(x) \cap \Gamma(y) $
Jaccard's coefficient	$\frac{ \Gamma(x) \cap \Gamma(y) }{ \Gamma(x) \cup \Gamma(y) }$
Adamic / Adar	$\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log[\Gamma(z)]}$
preferential attachment	$ \Gamma(x) \cdot \Gamma(y) $

- d_{xy} is the distance between node x and y.
- Γ(x) is the set of nodes adjacent to node x.

Intuition

- Recognizing that traditional studies in social science have demonstrated the usefulness of several indices, we can assume that feature generation toward the indices is also useful.
- **Feature Generation:**

Feature Generation

- □ Step 1: Defining a Node Set
 - Based on a network structure
 - i.e. $C_x^{(k)}$ is a set of nodes within distance k from x.
 - Based on the category of a node
 - i.e. $N_{A=a}$ Define the node set for which the categorical value A is a

□ Step 2: Operation on a Node Set

- Define operators with respect to two nodes; then expand it to a node set
 - $s^{(k)}(x, y)$ returns 1 if nodes x and y are within distance k, and 0 otherwise.
 - \square $u_x(y,z)$ returns 1 if the shortest path between y and z includes node x.
 - □ $u_x \circ N$ returns a set of values for each pair of $y, z \in N$.
- □ Step 3: Aggregation of Values
 - Based on a list of values, several standard operations can be added to the list.
 - □ i.e. summation (*Sum*), average (*Avg*), maximum (*Max*), and minimum (*Min*)

Step 4: Optionally, we can take the average, difference, or product of two values obtained in Step 3.

For Link Prediction: Relational Features

- □ Generate network-based features which represent a score (i.e. connection weight) on two nodes *x* and *y*.
 - i.e. Calculate preferential attachment $(|\Gamma(x)| \cdot |\Gamma(y)|)$ by respectively counting the links of nodes x and y, thereby obtaining a value as the product of two values.
- **Define a node set that is relevant to both node** *x* **and node** *y*.
 - i.e. Common neighbors ($|\Gamma(x) \cap \Gamma(y)|$) depend on the number of common nodes which are adjacent to nodes x and y.
- Several operators should be added/modified for link prediction aside from link-based classification to cover more features.
 - i.e. Operator u_x is modified as $u_{xy}(z,w)$, which returns 1 if the shortest path between z and w includes l_{xy} and θ otherwise.

Introduction **Related Works** 2

Methodology

4 5

5

Experiment Result Discussion and Conclusion

2

Operator List

Step	Notation	Input	Output	Description	LC*	LP*
1	$C_x^{(k)}$	node x	a node set	nodes within distance k from x	$\sqrt{(1)}$	$\sqrt{(1)}$
	$C_{\mathcal{Y}}^{(k)}$	node y	a node set	nodes within distance k from x		$\sqrt{(1)}$
	$N_{A=a} \cap C_x^{(k)}$	node x	a node set	nodes within distance to x and the attribute A is a	√(3)	
	$C_x^{(k)}\cap C_y^{(k)}$	node x and y	a node set	nodes within distance k from x and within distance k from y		$\sqrt{2}$
	$C_x^{(k)} \cup C_y^{(k)}$	node x and y	a node set	nodes within distance k from x or within distance k from y		$\sqrt{2}$
2	s ^(k)	a node set	a list of values	1 if connected within distance k, 0 otherwise	$\sqrt{(1)}$	√(1,2)
	t	a node set	a list of values	distance between a pair of nodes	$\sqrt{(1)}$	$\sqrt{(1,2)}$
	t_x	a node set	a list of values	distance between node x and other nodes	√(2)	$\sqrt{(1,2)}$
	γ	a node set	a list of values	number of links in each node		$\sqrt{2}$
	u_x	a node set	a list of values	1 if the shortest path includes x , 0 otherwise	$\sqrt{(2)}$	√(1,2)
	e_{χ}	a node set	a list of values	structural equivalence between node x and other nodes		√ (2)
3	Avg	a list of values	a value	average of values	$\sqrt{(1)}$	√(1,2)
	Sum	a list of values	a value	summation of values	$\sqrt{(1)}$	$\sqrt{(1,2)}$
	Min	a list of values	a value	minimum of values	$\sqrt{(1)}$	√(1,2)
	Max	a list of values	a value	maximum of values	$\sqrt{(1)}$	$\sqrt{(1,2)}$
4	Diff	two values	value	difference of two values		√(1,2)
	Avg	two values	value	average of two values		$\sqrt{(1,2)}$
	Product	two values	value	product of two values		√(1,2)
	Ratio	two values	value	ratio of two values	$\sqrt{(4)}$	$\sqrt{(1,2)}$
	Max	two values	value	maximum of two values		$\sqrt{(1,2)}$
	Min	two values	value	minimum of two values		$\sqrt{(1,2)}$

Table 3: Operator list

2

3

• *: LC stands for link-based classification; LP stands for link prediction. The number in the parentheses is the Method number.

• Aggregate operators in Step 4 are optional. This aggregates two feature values obtained in Step 3 into a single feature value.

Constraints

- **64** features for link-based classification.
- For link prediction, we can generate 126 features in Method 1 and 160 features in Method 2.

Some resultant features sometimes correspond to well-known indices.

- i.e. Denote the network density as $Avg \circ s^{(1)} \circ N_{t}$
- Regarding link prediction, we can also generate several features that are often used in relevant studies in the literature.

• i.e. Common neighbors is realized by $Ratio{Sum \circ t_{xy} \circ (C_x^{(1)} \cap C_y^{(1)}), Sum \circ t_{xy} \circ (C_x^{(1)} \cup C_y^{(1)})}$

Datasets

a @cosme dataset

Data selection for link-based classification

① Choose a community as a target; ② select users in the community as positive examples; ③ As negative examples, select those who are not in the community but who have friends who are in the target community.

Data selection for link prediction

I) The positive examples are picked up randomly among links created between time T and T' (T < T' < T''); (2) The negative examples are those created between time T' and T''.</p>

Hatena Bookmark dataset

- **First define similarity between users.**
- Create training and test data similarly to the @cosme dataset

Results: Link-based Classification

0.607

Method 4

0.604

Table 4: Recall, precision, and *F*-value as adding operators. (b) Hatena Bookmark (a) @cosme Recall Precision F-val. Recall Precision F-val. baseline 0.43 0.495 0.661 0.600 0.628 0.704 Method 1 0.387 0.593 0.465 0.499 0.726 0.581 Method 2 0.432 0.581 0.491 0.509 0.720 0.585 Method 3 0.499 0.574 0.532 0.673 0.707 0.681

0.604

0.692

0.758

0.717

Results: Link-based Classification

Table 5: Top 10 effective features in the @cosme dataset for link-based classification.

Feature	Description
$Sum \circ t \circ (C_x^{(\infty)} \cap N_{C=c})$	Number of links among nodes reachable from x and at-
	tribute C is c.
$Sum \circ s^{(1)} \circ C_x^{(1)}$	Number of links among nodes adjacent to x.
$Avg \circ t \circ C_x^{(\infty)}$	Characteristic path length of nodes reachable from x.
$Avg \circ t \circ (C_x^{(\infty)} \cap N_{C=c})$	Characteristic path length of nodes reachable from x and
	attribute C is c .
$Sum \circ u_x \circ (C_x^{(\infty)} \cap N_{C=c})$	Betweenness centrality of nodes reachable from x and
	attribute C is c .
$Sum \circ t_x \circ C_x^{(1)}$	Number of nodes adjacent to x.
$Sum \circ s^{(1)} \circ (C_x^{(1)} \cap N_{C=c})$	Number of links among positive nodes adjacent to node
	х.
$Avg \circ u_x \circ C_x^{(1)}$	Betweenness centrality of nodes adjacent to x.
$Max \circ e_x \circ C_x^{(\infty)}$	Maximum of the structural equivalent of nodes reach-
	able from <i>x</i> .
$Sum \circ e_{x} \circ (C_{x}^{(\infty)} \cap N_{C=c})$	Summation of the structural equivalent of nodes reach-
	able from x and attribute C is c .

Results: Link Prediction

Table 6: Recall, precision, and *F*-value in the @cosme dataset as adding operators.

	Recall	Precision	F-value
graphic distance	0.1704	0.6687	0.2708
common neighbors	0.1704	0.6687	0.2708
Jaccard coefficient	0.1396	0.7031	0.2326
Adamic/Adar	0.1704	0.6686	0.2708
preferential attachment	0.5553	0.5779	0.5658
Method 1	0.5772	0.6333	0.5982
Method 2	0.5687	0.6721	0.6130

 Introduction
 Related Works
 Methodology
 Experiment Result
 Discussion and Conclusion

 1
 2
 3
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 2
 3
 4
 5
 1
 3
 4
 5

Results: Link Prediction

Table 7: Top 10 effective features in the @cosme dataset for link prediction (Method 1)

Feature	Description
$Max\{Avg \circ t \circ C_x^{(2)}, Avg \circ t \circ C_y^{(2)}\}$	Maximum of the average distance.
$Max\{Sum \circ s^{(1)} \circ C_x^{(1)}, Sum \circ s^{(1)} \circ C_y^{(1)}\}$	Maximum of the clustering coefficient.
$Min\{Sum \circ t_x \circ C_x^{(1)}, Sum \circ t_x \circ C_y^{(1)}\}$	Minimum of the number of adjacent nodes.
$Max\{Avg \circ s^{(1)} \circ C_x^{(2)}, Avg \circ s^{(1)} \circ C_x^{(2)}\}$	Minimum of the network density.
$Max\{Avg \circ u_x \circ C_x^{(2)}, Avg \circ u_x \circ C_y^{(2)}\}$	Maximum of the betweenness centrality.
$Min\{Avg \circ t \circ C_x^{(2)}, Avg \circ t \circ C_y^{(2)}\}$	Minimum of the average path length.
$Max\{Sum \circ u_x \circ C_x^{(2)}, Sum \circ u_x \circ C_y^{(2)}\}$	Maximum of the betweenness centrality.
$Max\{Sum \circ t_x \circ C_x^{(1)}, Sum \circ t_x \circ C_y^{(1)}\}$	Maximum of the number of adjacent nodes.
$Avg\{Sum \circ s^{(1)} \circ C_x^{(1)}, Sum \circ s^{(1)} \circ C_y^{(1)}\}$	Average of the clustering coefficient.
$Sum \circ u_x \circ C_x^{(2)} - Sum \circ u_x \circ C_y^{(2)}$	Difference of the betweenness centrality.

Discussion

- Consider a tradeoff: keeping operators simple and covering various indices.
- Other features cannot be composed in the current setting.
- Do not argue that the operators defined are optimal or better than any other set of operators.
- The number of features becomes huge when they increasingly add operators.

Conclusion

- Can generate features that are well studied in social network analysis, along with some useful new features, in a systematic fashion.
- Applied the proposed method to two datasets for link-based classification and link prediction tasks and thereby demonstrated that some features are useful for predicting user interactions.

Thank You!