
Project Report
cs5090: Virtual Environments with Dr. Scott Kuhl

Ruimin Zhang and Harriet King

April 2011

Abstract: “Show Your Face”, is a game played by face tracking with
a webcam. The game makes moves on a screen displayed "game
board" based on face position and size in the frame. This project
requires a webcam and openCV. Expression recognition has been
trained for still images with limited success and the trained cascade
was not incorporated into the game.

Table of Contents
Original Intention..2
Overview...3
Details of the Webcam Face Tracking Game..3

Introduction..3
Significance..3
Game Play Rules...4
Technology of Face Tracking Game...4
Observations from Demonstration..4

Details of the Expression Recognition Algorithm...5
Introduction..5
Background Regarding Facial Expressions..6
Technology of Expression Recognition..8
Preparing the Image Database and Training Results..9

Future Work...11
Lessons Learned..11

Complications...12
Solutions...13
What OpenCV Provided...13
Division of Labor..13

Timeline...14
Related Documents..16

Physical Resources...16
References...16
Appendix I: Original Brainstorming and References Table...18
Appendix II: Original Proposal..18
Appendix III: Poster for MICWIC...18
Appendix IV: Example Images...18
Appendix V: Sample Expression Diagrams..18
Appendix VI: Data File Example for Training Expression Algorithm...19
Appendix VII: C++ Code to Prepare Image Database for Expression Training............................19
Appendix IX: C++ Code from Webcam Face Tracking Game...19
Appendix X: XML from OpenCV Provided Face Tracking Algorithm...19
Appendix XI: Performance of Training File...19
Appendix XII: Slides from Final Presentation to Class...19

Original Intention

Our intention was to explore using the openCV library and see how easy it was to use.
OpenCV has many image functions and our project was to use a webcam and create a face
tracking and expression recognition program that would be a game for the user to play. If we
had time, we were going to do 3-d anaglyph of a still image chosen by the user while playing
the game.

Page 2 / 19

Overview

We succeeded in creating a game using a webcam programmed for face tracking using the
OpenCV library in Visual C++. We were accepted to give a poster at Michigan Celebration of
Women in Computer Science (MICWIC) and while at MICWIC, we demonstrated the game
which gave us a chance to see the face tracking in action with over 40 users.

We also succeeded in training Adaboost to recognize basic facial expressions on still images.
This required preparing a database of images for positive and negative training samples The
algorithm recognizes still images only and is separate from the webcam face tracking game,
but we did succeed in incorporating the expression recognition for anger, happy, and surprise
with the webcam capturing the user. See a video here: http://www.youtube.com/watch?
v=UKC15jKmiKY.

We did not do any of the extra time contingencies regarding anaglyph 3-d as discussed in the
original proposal.

Details of the Webcam Face Tracking Game

Introduction

In this project, we used the OpenCV library with a webcam to create a game where the player
can use his or her face position to play a Tic-Tac-Toe game with the computer. The user’s
display includes the webcam display frame and inside that to the upper right is a frame
displaying the game board. The user can mimic into the webcam one of the face positions by
surrounding a guide square with their face tracking square. If they are successful then the
game will mark that square with the player’s designated color. Please see example game
image below.

OpenCV provided a cascade of classifiers for face recognition as an XML file that could be
used directly in the program, then functions were available to track the face in the webcam
images. Programming included displaying the live video from the webcam, creating the game
interface including the game board with markers, the guide squares and face tracking square,
and creating an algorithm for computer play against the human player.

Significance

Webcams are inexpensive and commonly found on laptops and can be used for users'
tracking such as the 3 degrees of freedom face tracking we implemented in our game. Using
webcams and object detection techniques makes it possible to implement a simple and
affordable tracking system.

We were motivated to try the OpenCV library and see how quickly and accurately webcam
face tracking could be implemented. Please see our “Future Work” section for more about
our ideas.

Page 3 / 19

Game Play Rules

• Uses standard Tic-Tac-Toe rules
• User plays against computer
• Watch play on game board (upper right)
• Click ‘S’ key to begin
• Move face in webcam to move face square
• Surround a game square with face square
• Click the ‘C’ key to select square
• Game board will update with black circle
• Computer will counter move with red squares

Technology of Face Tracking Game

Face tracking determines the location and size of human faces in an image or a video. Face
tracking often uses machine learning (ML) algorithms to train the machine to recognize
human faces. The most popular ML algorithm for face-tracking is AdaBoost which was
proposed by Viola and Jones in 2001.

OpenCV is an open source computer vision library providing 500 functions spanning many
areas in vision, such as camera calibration, stereo vision, robotics, and user interface.

We used a cascade of classifiers provided by OpenCV trained by Adaboost for face detection.

Observations from Demonstration

For the demonstration, we set up the game on a chest height table using the laptop to play.
This allowed users to adjust the screen tilt to best accommodate their height so the webcam

Page 4 / 19

Example of Game Play: Center Upper Square

could capture their face. Over 40 users tried the game. We also previewed the game
demonstration in class and got valuable feedback.

See example image above to understand the basic game play. The user’s black square
indicates the face tracking and there are red game play guide squares. The user is lining up
her tracking square around the upper center guide square. Then when she pushes the “c”
key she can “capture” that square on the game board, shown at upper right. In fact, she has
already “captured” that square as evidenced by the black circle in that square on the game
board.

Feedback from the preview session that we incorporated before the demonstration at
MICWIC included:

1. improve the computer’s game algorithm to provide a better opponent for user
2. avoid confusion by having the tracking pick up only one face
3. clarify the guide and tracking squares by using different colors
4. increase the clarity of the game board by adding background color to distinguish it from

the webcam image
5. give different colors to circle and square markers
6. increase the margins from the edge to the guide squares to make it easier to surround

the guide squares with the user’s tracking square.

During the demo at MICWIC, attendees passing by were invited to play the game. A two
sentence explanation was given to introduce the game play so users knew how to line up
their tracked image around the guide squares. Most players succeeded in completing a full
game in less than 90 seconds. One player with dark skin was only sporadically recognized by
the face tracking algorithm but other players with dark skin were recognized.

Users had a variety of hair and head coverings including a Muslim with her face surrounded
by fabric but the algorithm did recognize her face. Users often turned their faces when they
first began playing but quickly realized they needed to stay facing the webcam centered at the
top of the laptop’s screen to have the game recognize their face.

Also, users came very close to the camera and found their face was too large to be
recognized. They needed to keep a little bit of distance. Too much distance made their
tracking square too small to surround the guide squares. More than one user suggested
making the game recognize when the face tracking square was completely inside the guide
square instead of surrounding the guide square.

Details of the Expression Recognition Algorithm

Introduction

Unlike the face tracking algorithm, there were no OpenCV classifiers ready to use for facial
expression recognition. We chose to use the training function provided by OpenCV to train
Adaboost with haar-like features. There are not many resources for facial expression training.
Human facial expressions are very complex, so we intended to train for just the six basic
expressions: anger, surprise, disgust, fear, sad, and joy.

Page 5 / 19

After overcoming many obstacles, including OpenCV not including the necessary
“_Cvhaartraining.cpp” file in their downloads, and preparing enough images to effectively
train, we have succeeded in training for anger, happy, and surprise. A basic effective cascade
needed to be trained at least 30 hours with more than 7000 positive training samples and
3000 negative samples.

Background Regarding Facial Expressions

Expression recognition is a complex endeavor because expressions are highly individualistic
and subtly convey a blend of emotions. Although somewhat cross cultural, expressions do
vary across demographics. The most obvious expressions, even in other species, are anger
and extreme contentment and they seem disjoint from each other. But even with someone
you know very well, disgust and fear can be difficult to distinguish.

If one is looking for just the “basic” six: sad, angry, surprised, disgust, afraid, and happy, there
are many fuzzy combinations. Are we interested in happy surprise? Scared surprise? Both?
Should we include sad afraid with afraid?

The facial muscles are directly controlled by the nervous system and facial expressions

Page 6 / 19

Guillaume Duchenne, Facial Expression
Research, 1862

happen instantaneously. Scientists argue that expressions happen faster than one’s brain
can react, including microexpressions that are impossible to control and appear for as short a
1/25th of a second.

Facial expressions have been the subject of scientific study as early as 1862 when Guillaume
Duchenne published his research in Mécanisme de la Physionomie Humaine studying which
muscles produced certain expressions using electrodes. In the last 50 years there has been
extensive research into facial expressions but some argue that this is a waste of time since
facial expression is so individualistic [Daniel Laberge].

It has been argued that there are thousands of subtle facial expressions and that if humans
did not have language, we would be much better at reading expressions, like our primate
cousins who have elaborate communication via facial expression [Daniel Laberge].

Besides the cultural and individualistic issues and the blurring of a variety of emotions into a
single expression, there are also concerns about the source of the expression images. We
started with a research database of images called the Cohn-Kanade AU-Coded Facial
Expression Database. This database was created for research purposes and includes basic
expressions from test subjects.

But having a test subject emote a clearly defined expression is not necessarily effective.
Compare the images that follow of a test subject’s version of anger to an actor’s expression of
anger, or even a small child’s anger which cannot be manufactured. That small child just
feels angry and happened to be captured in that moment.

Page 7 / 19

Database Test Subject: Anger

Technology of Expression Recognition

The haar-like features describes the ratios of pixel intensities of sub-regions of a rectangular
region in an image. It scans the image many times, specified by the number of stages, with
increasing size of scan window. If an area is scanned as a target expression multiple times, it
will confirm that expression.

Page 8 / 19

Actor: Anger

Small Child: Natural Anger

Sample Expression Diagrams

Expression recognition requires the algorithm to break down the features of the face and then
be trained in what combination of features, eyebrows, eyes, mouth, etc., are regarded as a
certain expression. Angle of eyebrows for example can be “read” as identifiers of separate
expressions. Please see Appendix for “Sample Expression Diagrams”.

An effective cascade is trained by iterating through the training images for many stages and
this takes at least 30 hours.

The images need to be prepared for training by manually categorizing the image as a positive
or negative example, noting the location coordinates of the face in the image and the face’s
width and height and then combining the information into a DAT file. The images are all
converted into one single VEC file and fed for training.

There are two ways to use haar-like features to analyze facial expressions. One way is to
analyze a still image, the other way is to analyze the haar-like features hidden in dynamic
images which is a sequence of images describing one facial expression movement. For our
experiments we directly applied haar-like features to still images.

One mathematical way to consider the possibilities of expressions is to consider the 6 basic
expressions as on or off, then it is 2 to the 6th possible combinations, which is 64 expressions.
But psychologists would argue that there are hundreds or even infinite subtle expression
variations across individual differences.

Preparing the Image Database and Training Results

The Cohn-Kanade image database contained too few images to effectively train the
algorithm. Solutions were found to run programs to slightly distort each image into 100
images. The 84 positive examples for “happy” thus became 8400 positive samples. Training
runs required more than 30 hours and needed to reach at least level 15 to be effective, 20
levels is better.

The training process for each facial expression includes:

– find all jpg images of that training expression and detect the position and size of faces
in images and write every image's path name, file name, face position and face size
into a DAT file

– use the binaries (opencv_createsamples.exe) to generate a VEC file with 100
distortions for each face

– merge all VEC files into one single VEC file
– use the other training expressions' images as negative samples
– conduct the training and return a folder of cascade of classifiers
– Use the binaries (convert_cascade.exe) to convert the cascade to XML file
– performance test

We found the Cohn-Kanade database to be inaccurately labeled for each facial expression
and had to manually classify the images by expression. Please see the “Complications”

Page 9 / 19

section for more about difficulties preparing the images.

The following table summarizes the training images and results.

Expression # Original
Images

Positive
Samples

Negative
Samples

Training Stages Finish Training
Time
(hours)

Happy 84 8400 More than
400

16 Exit
before
finish

30

Angry 64 6400 945 15 complete 36

Surprise 78 7800 3118 19 complete 90

Note: The “happy” cascade has high accuracy in detecting a happy expression but it also has
a high rate of false positives where itdetects other facial expressions as happy.

Note: “Angry” has a lower rate of accuracy in detecting angry expressions and also has a
lower rate false positives.

Note: “Surprise” has an accuracy rate between the rates of “angry” and “happy”.

Both humans and trained machines do not have a 100% accuracy rate of reading
expressions. A very successful training would have an accuracy rate of about 94 – 96% and
a human has even lower performance than that We find that our trained cascade for angry
can be confused by happy, worried, and sometimes by disgust. With artificial intelligence, if
the expression is not recognized, then it should be negative without false positives.

Factors still limiting the effectiveness of the trained algorithm include absence of enough
negative training examples and the cultural and individualistic elements of expressions,
including lighting, skin color and test subjects “pretending” to be the desired expression.
Below are a few examples of incorrectly identified “anger” and “happy”.

Page 10 / 19

Expression Recognition Errors: anger (left), happy (center), happy (right)

Future Work

In the future, we want to improve the training database so that we will be able to improve the
performance of our cascade. We hope our trained cascade can be used in some applications
such as intelligent searching. For example, when a user searches, the search engine returns
a list of results. The computer can detect how the user feels about the returned result. If it
finds the user is not satisfied, it will continue to return new results. Once the computer finds
the user is happy, it stops returning new results.

Another interesting application could be an individualized reminder, like in a scenario where
someone wants to have a rest every hour when they are working with a computer. Currently
they can set an alarm manually. But if the computer can understand their emotions, it can
detect the users' impatience, tiredness, boredom and so on, and then the computer can
suggest the user take a break or try some other more interesting activity to get rid of that
negative emotion.

No single algorithm can have a 100% accuracy rate for facial expression recognition.
Normally a 94% - 96% detection rate is really good. A human has even lower performance
than that. One solution to improve accuracy might be a combined method of Adaboost with
haar-like features and geometrical detection.

One more idea is to use 3 degree of freedom face tracking for a 3d-desktop VE system. In
such an application, the user will see a different display depending on their relative face
position.

Lessons Learned

Both Ruimin and Harriet learned that although unequal in their background knowledge and
skills, they could work well together, capitalizing on their strengths and maintaining good
humor to succeed in the public arena of MICWIC with their poster and game demonstration.

We learned that it is very time consuming to train a cascade. Ruimin designed and
implemented code to process the images in preparation for training, finding the face in each
image and creating negative and positive samples in appropriate VEC files. Ruimin learned
that the machine learning model of OpenCV is not exactly user friendly, but it is free. The
missing “_cvhaartraining.cpp” file was a big disappointment and demonstrated OpenCV’s
unreliability.

Ruimin learned that training an algorithm takes thousands of images! And that it is easy for
the machine learning algorithm to get the expression wrong. The more training examples,
both positive and negative, the better the training.

Harriet learned that it is very difficult to feel fear just for the camera. While sorting the Cohn-
Kanade image database, fear was much harder to read. Expression “give-aways” such as
scrunched eyebrows, open mouth, pursed mouth and other tell tale signs became clear when
searching for all images of one expression. Overall, most of the test subjects did not really

Page 11 / 19

have a convincing fear expression.

Harriet was surprised and disappointed to learn that OpenCV did not have a store bought
ready to go function for expression recognition and that the project was going to become an
artificial intelligence exercise. Harriet learned that just because there are examples of
OpenCV projects with expression recognition on the internet, the fine print says “We will not
share our code” and assuming that OpenCV provides this functionality is wrong. This was a
learning opportunity about the intersection of many subfields of computer science in virtual
environments, such as computer vision, artificial intelligence and graph / image precessing.

Harriet was dismayed how hard it was to get the development environment straightened out,
including special permissions and help from authorized administrators.

The final presentation was a great example of the strong teamwork that developed between
us including our support of each other’s efforts. We not only cooperatively created the
content and organization of the slides, we also practiced the oral explanation and succeeded
in nimbly sharing and conveying the main points of the project to the class.

Complications

Ruimin conquered difficulties with the image database and with OpenCV excluding the
necessary source file for haar-like training. Harriet conquered difficulties with equipment,
environment set up, and permissions.

A few of the problems include:
1. the original database had too few images
2. the Cohn-Kanade image database “readme” file had inaccurate file naming

conventions to identify the various expressions
3. there was no accompanying information file to identify the positive and negative

examples of each expression and the coordinates and size of the face
4. there was no way in OpenCV to create the required a VEC file from multiple images

with multiple distortions
5. the function “startSampleDistortion could not be used to modify the training files

because its .cpp file (_cvhaartraining.cpp) was missing
6. there was no ready to use expression recognition functionality in OpenCV
7. There were no GUI creation libraries on the lab Windows machines or on Ruimin’s

laptop and there were no readily apparent free libraries or WYSIWYG design tools to
create a GUI for the game

8. the MTU labs do not provide webcams
9. the webcam we borrowed did not have a driver
10.OpenCV would not install in the Linux labs even with csmaint’s help
11. there were no lab Windows development environments to match Ruimin’s

development set up
12. installation was not allowed in the special permission Windows lab
13. the finished game was hard coded for a larger resolution webcam than the borrowed

webcam, so the game was not visible with the borrowed webcam
14.Harriet was unfamiliar with the Windows 7 environment as well as anything to do with

Page 12 / 19

artificial intelligence, adaboost, cascades, machine learning, and trained algorithms

Solutions

Ruimin used her prodigious research skills to find help online and other code sources and
samples, solving all of the complications. She resourcefully re-used the face tracking code
she wrote using OpenCV to create original code to automatically generate the required
information file for the expression training images by finding the face coordinates, width, and
height and outputting to the data file. She also found online some code that she modified to
create the graph of all the training images as a vector, merging 8400 images into one VEC
file.

Harriet needed to solve many environment complications and eventually requested and
received special permission to use the HCI lab which has Windows machines. She used the
helpful workers in CSMaint to get the development environment basically functional and was
able to code the game program to have relative webcam size and improved game display
functionality. Ruimin patiently explained the basics of the AI used in this project to Harriet.

Harriet manually classified the images from the Cohn-Kanade database and Ruimin did the
work of running her original programs to prepare the images as a VEC file and DAT file. See
“Technology” and “Preparing the Images” sections for more details.

What OpenCV Provided

OpenCV did provide lots of functionality for image manipulation and since it is open source it
was free and there was documentation online. OpenCV also provided some simple drawing
capabilities in the webcam display window which helped us to create the game, the guide
boxes and tracking boxes directly in the display.

OpenCV also provided the trained cascade and function for face tracking with the webcam
which we used in the game. OpenCV also provided a method to create positive training
image examples from one image with multiple distortions and the capability to create positive
training image examples from multiple images, but not for negative training examples which
are also required for effective training.

Division of Labor

We were encouraged to reach outside our comfort zones, but our knowledge and experience
backgrounds, as well as access to resources, were unequal. This situation resolved
comfortably with a willingness to fill in any gaps and do anything to assist. There were
occasional communication confusions which were always addressed right away with
satisfactory solutions. Traveling together to MICWIC and presenting the poster and game
demonstration cemented the team into a happy partnership.

Clearly Ruimin, who intends to continue this work and is interested in expression recognition
for a long term project, had much more background and completed much of the project.
Harriet was an enthusiastic helper, doing game display programming, sorting expression

Page 13 / 19

photos, and writing most of the documents throughout the project, including the poster
presented at MICWIC.

Timeline

Original Proposal Goal Expected Actual Task Completed

Use openCV in C++ with
video capture on mac laptop

completed Same Mid
February

Use openCV in C++ with
video capture in Linux w/plug
in webcam

Feb 25 failed

Feb 25 Get permission to use Windows
HCI lab

Mid
February

Get plugin webcam working in
Windows HCI lab

Late
February

Use openCV in C++ in Windows
HCI lab w/plug in webcam

Late
February

Detect face completed Same Mid
February

Detect face size and location
in the frame

March 11 For still image Mid
February

Get expression recognition training
database

Late
February

Judy reads 3 papers and a book to
understand how machine learning
algorithm adaBoost works to help
recognize facial expressions

Late
February

code of adaboost algorithm working
but not enough training images

Late
February

Code to train our own cascade for
face-tracking to test if expression
recognition code written correctly,
code correct, not enough training
images

Late
February

Program prototype game
board

March 11 Early March

Program keystroke control of
game, or GUI

March 11 “c” key to capture game play image Early March

Design final game board March 25 Keep game board inside webcam
display

Early March

Page 14 / 19

Program game board and
game rules, including taking
turns or racing the clock

March 25 Keep game simple with tic tac toe Early March

Detect two faces, size, and
location

March 11 On webcam, detects as many
faces as fully visible

Early March

Judy writes poster proposal for
MICWIC

Early March

Detect face size and location from
webcam, example:
http://www.youtube.com/watch?
v=8pog2i40oGY

Early March

Webcam face tracking works on
HCI Windows

Early March

Game code is done with webcam Mid March

Present game and progress slides
to VE class

Mid March

Game code works on HCI
Windows, requiring adjustment to
relative camera window size for
game components

Late March

Practice presenting poster and
game demonstration to class and
get constructive feedback to
improve game

Late March

Present poster and game
demonstration at MICWIC

April 1

Categorize Cohn-Kadade image
database by hand

Early April

Create photos of ourselves for
testing

Mid April

Detect expression and
program expression
recognition

March 25 Still image only Mid April

Webcam with expression
recognition for happy, surprise, and
anger

April 21 !

Use expression to dictate
game moves

April 8 Contingency not done

Use expression to dictate
starting up music or script or

April 8 Contingency not done

Page 15 / 19

http://www.youtube.com/watch?v=8pog2i40oGY
http://www.youtube.com/watch?v=8pog2i40oGY

mini videos

Program frame manipulation
to create anaglyph 3-d image

April 25 Contingency not done

Program user’s ability to
select captured expression to
view in anaglyph 3-d

April 25 Contingency not done

Display anaglyph 3-d
captured expression image

April 25 Contingency not done

Related Documents

See files referred to in Appendices in directory appendices included with this report. Each
subdirectory has a README file explaining the contents, including which files are original,
which are library, the images used for training and more. See Appendices for a partial listing
of the types of related documents found in the Appendices directory.

Physical Resources

We are able to run our game on a Windows laptop with webcam. We installed openCV and
learned how to use it. We are able to use the webcam. We both learned OpenCV and wrote
C++ code in Windows Visual Studio development environment. We were able to pass .cpp
files back and forth via email and compiling them in our respective environments.

References

Machine learning tutorial:
http://note.sonots.com/SciSoftware/haartraining.html

OpenCV machine learning reference:
http://www.cognotics.com/opencv/docs/1.0/ref/opencvref_ml.htm

Some example of machine learning in OpenCV:
http://www.cognotics.com/opencv/docs/1.0/ref/opencvref_ml.htm

Machine Learning data sets:
http://vasc.ri.cmu.edu/idb/html/face/facial_expression/
http://www.ics.uci.edu/~mlearn/MLRepository.html

Three papers related to adaBoost
Y. Freund, A more robust boosting algorithm. May 2009. URL: http://arxiv.org/abs/0905.2138
Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm. In Machine
Learning: Proceedings of the Thirteenth International Conference, pages 148-156, 1996
P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features,
CVPR, 2001

Facial Expressions:
http://en.wikipedia.org/wiki/Facial_expression

Page 16 / 19

http://en.wikipedia.org/wiki/Facial_expression

Facial Expressions:
http://www.daniellaberge.com/grooming/beautyexpressions1.htm

OpenCV 2.1 install video on Visual Studio 2010
http://www.youtube.com/watch?v=XeBhwbRoKvk

"python26_d.lib" error

http://opencv-users.1802565.n2.nabble.com/python26-d-lib-td4963149.html

OpenCV tutorial
http://www.pages.drexel.edu/~nk752/tutorials.html

OpenCV machine learning tutorial
http://note.sonots.com/SciSoftware/haartraining.html

OpenCV machine learning reference
http://www.cognotics.com/opencv/docs/1.0/ref/opencvref_ml.htm

Machine Learning lecture
http://stat-www.berkeley.edu/users/breiman/wald2002-1.pdf

Some example of machine learning in OpenCV
http://www.cognotics.com/opencv/docs/1.0/ref/opencvref_ml.htm

Machine Learning data set
http://www.ics.uci.edu/~mlearn/MLRepository.html

Face data set download
http://archive.ics.uci.edu/ml/datasets/CMU+Face+Images
http://vasc.ri.cmu.edu/idb/html/face/facial_expression/

Reference for understanding the machine learning algorithm of detecting facial expression in
real-time
paper: Facial expression recognition using encoded dynamic features
paper: Robust real-time object detection, Paul Viola and Michael J. Jones
paper: A short introduction to boosting, Yoav Freund and Robert E. Schapire (adaBoost)
find all *.png files in current directory and copy them to

convert txt file to dat file
mv happy.txt happy.dat

create positive training samples
./opencv_createsamples -info happy.dat -vec positive.vec -w 96 -h 96 -show

convert cascade into xml file
./convert_cascade –size="24x24" haarcascade haarcascade.xml

note: 24x24 is the size of output sample width and height; haarcascade is the directory that
save the trained cascade.

Test the performance of trained cascade
./opencv_performanced -data haarcascade.xml -info happy.dat -ni

Create a number of positive samples from a single images

Page 17 / 19

http://vasc.ri.cmu.edu/idb/html/face/facial_expression/
http://archive.ics.uci.edu/ml/datasets/CMU+Face+Images
http://www.cognotics.com/opencv/docs/1.0/ref/opencvref_ml.htm
http://stat-www.berkeley.edu/users/breiman/wald2002-1.pdf
http://www.cognotics.com/opencv/docs/1.0/ref/opencvref_ml.htm
http://note.sonots.com/SciSoftware/haartraining.html
http://www.pages.drexel.edu/~nk752/tutorials.html
http://opencv-users.1802565.n2.nabble.com/python26-d-lib-td4963149.html
http://www.youtube.com/watch?v=XeBhwbRoKvk
http://www.daniellaberge.com/grooming/beautyexpressions1.htm

$ createsamples -img face.png -num 10 -bg negative.dat -vec samples.vec -maxxangle 0.6
-maxyangle 0 -maxzangle 0.3 -maxidev 100 -bgcolor 0 -bgthresh 0 -w 24 -h 24

Show training images from a .vec file
$ createsamples -vec samples.vec -w 20 -h 20

Use single .jpg images to create a .vec with multiple training images with distortion and then
use "mergevec.exe" to merge multiple .vec files into a .vec file
./mergevec collection_vec.dat output_collection_vec.vec -show -w 24 -h 24
note: collection_vec.dat is a file with multiple single .vec filenames;
output_collection_vec.vec is the output .vec file

 Training
./opencv_haartraining -data haarcascade -vec samples.vec -bg negatives.dat -nstages 20
-nsplits 2 -minhitrate 0.999 -maxfalsealarm 0.5 -npos 7000 -nneg 3019 -w 20 -h 20 -nonsym
-mem 512 -mode ALL

Anger training:
./opencv_haartraining -data haarcascade_anger_final -vec anger_positive_collection.vec -bg
negatives_anger.dat -nstages 20 -nsplits 2 -minhitrate 0.999 -maxfalsealarm 0.5 -npos 6400
-nneg 945 -w 20 -h 20 -nonsym -mem 512 -mode ALL

3D Anaglyph Reference
A simple computation to improve the quality of anaglyph
http://www.3dtv.at/knowhow/anaglyphcomparison_en.aspx

A course about anaglyph
http://www.helloapps.com/Stereoscopic/

Appendix I: Original Brainstorming and References Table

See “ideaBrainstorming.odt”.

Appendix II: Original Proposal

See “projectProposal.pdf”.

Appendix III: Poster for MICWIC

See “Veposter_hk_ruimin.pdf”.

Appendix IV: Example Images

See “sortPics” directory and sub directories.

Appendix V: Sample Expression Diagrams

See “sampleExpressionDiagrams.pdf”.

Page 18 / 19

http://www.helloapps.com/Stereoscopic/
http://www.3dtv.at/knowhow/anaglyphcomparison_en.aspx

Appendix VI: Data File Example for Training Expression Algorithm

See file “allN.dat”
sample data from “allN.dat” with explanation:
[dir / image filename] [number of images]

[x position of face] [y position] [width of face] [height of face]
all/S010_001_01594215.jpg 1 231 106 299 299
all/S010_001_01594226.jpg 1 225 95 312 312
all/S010_002_01593902.jpg 1 228 97 300 300
all/S010_003_01595414.jpg 1 229 107 303 303

Appendix VII: C++ Code to Prepare Image Database for Expression Training

In the directory of OpenCVConfig

Appendix IX: C++ Code from Webcam Face Tracking Game

In the directory of OpenCVConfig

Appendix X: XML from OpenCV Provided Face Tracking Algorithm

In the directory of OpenCVConfig

Appendix XI: Performance of Training File

See “performance_anger.txt” for anger training.
See “happy_anger.txt” for anger training. FIXME get from Ruimin

Appendix XII: Slides from Final Presentation to Class

final slides3.pdf

Page 19 / 19

	Original Intention
	Overview
	Details of the Webcam Face Tracking Game
	Introduction
	Significance
	Game Play Rules
	Technology of Face Tracking Game
	Observations from Demonstration

	Details of the Expression Recognition Algorithm
	Introduction
	Background Regarding Facial Expressions
	Technology of Expression Recognition
	Preparing the Image Database and Training Results

	Future Work
	Lessons Learned
	Complications
	Solutions
	What OpenCV Provided
	Division of Labor

	Timeline
	Related Documents
	Physical Resources
	References
	Appendix I: Original Brainstorming and References Table
	Appendix II: Original Proposal
	Appendix III: Poster for MICWIC
	Appendix IV: Example Images
	Appendix V: Sample Expression Diagrams
	Appendix VI: Data File Example for Training Expression Algorithm
	Appendix VII: C++ Code to Prepare Image Database for Expression Training
	Appendix IX: C++ Code from Webcam Face Tracking Game
	Appendix X: XML from OpenCV Provided Face Tracking Algorithm
	Appendix XI: Performance of Training File
	Appendix XII: Slides from Final Presentation to Class

