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ABSTRACT

AUTOMATIC SYNTHESIS OF FAULT-TOLERANCE

By

Ali Ebnenasir

Fault-tolerance is an important property of today’s software systems as we rely

on computers in our daily affairs (e.g., medical equipments, transportation systems,

etc). Since it is difficult (if not impossible) to anticipate all classes of faults that

perturb a program while designing that program, it is desirable to incrementally add

fault-tolerance concerns to an existing program as we encounter new classes of faults.

Hence, in this dissertation, we concentrate on automatic addition of fault-tolerance

to (distributed) programs; i.e., synthesizing fault-tolerant programs from their fault-

intolerant version. Such automated synthesis generates a fault-tolerant program that

is correct by construction, thereby alleviating the need for its proof of correctness.

Also, there exists a potential for reusing the computations of the fault-intolerant

program during the synthesis of its fault-tolerant version.

In the absence of faults, the synthesized fault-tolerant program should behave

similar to the fault-intolerant program. In the presence of faults, the synthesized

fault-tolerant program has to provide a desired level of fault-tolerance, namely failsafe,

nonmasking, or masking fault-tolerance. A failsafe fault-tolerant program guarantees

safety even in the presence of faults. In the presence of faults, a nonmasking fault-

tolerant program recovers to states from where its safety and liveness specifications

are satisfied. A masking fault-tolerant program always satisfies safety and recovers to

states from where its safety and liveness specifications are satisfied.

To provide a foundation for automatic synthesis of fault-tolerant programs, we

concentrate on two directions: theoretical aspects, and the development of a software

framework for the synthesis of fault-tolerant programs. The main contributions of

the dissertation regarding theoretical aspects are as follows:



• We identify the effect of safety specification modeling on the complexity of

synthesizing fault-tolerant programs from their fault-intolerant version.

• We show the NP-completeness proof of synthesizing failsafe fault-tolerant dis-

tributed programs from their fault-intolerant version.

• We identify the sufficient conditions for polynomial-time synthesis of failsafe

fault-tolerant distributed programs.

• We design a sound and complete synthesis algorithm for enhancing the fault-

tolerance of high atomicity programs – where program processes can atomically

read/write all program variables – from nonmasking to masking.

• We present a sound algorithm for enhancing the fault-tolerance of distributed

programs – where program processes have read/write restriction with respect

to program variables.

• We present a synthesis method for providing reuse in the synthesis of differ-

ent programs where we automatically specify and add pre-synthesized fault-

tolerance components to programs.

• We define and address the problem of synthesizing multitolerant programs that

are subject to multiple classes of faults and provide (possibly) different levels

of fault-tolerance corresponding to each fault-class.

To validate our theoretical results, we develop an extensible software framework,

called Fault-Tolerance Synthesizer (FTSyn), where developers of fault-tolerance can

interactively synthesize fault-tolerant programs. Also, FTSyn provides a platform

for developers of heuristics to extend FTSyn by integrating their heuristics for the

addition of fault-tolerance in FTSyn. Using FTSyn, we have synthesized several

fault-tolerant distributed programs that demonstrate the applicability of FTSyn for

the cases where we have different types of faults, and for the cases where a program

is subject to multiple simultaneous faults.
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Chapter 1

Introduction

The anticipation of all classes of faults that may perturb a program is difficult (if

not impossible). Thus, it is desirable to synthesize fault-tolerant programs from

their fault-intolerant version upon finding new classes of faults. Although there exist

efficient approaches [1] for the synthesis of high atomicity fault-tolerant programs –

where processes can read/write all program variables in an atomic step, there exists

a well-defined need for developing efficient techniques for the synthesis of (i) fault-

tolerant distributed programs – where processes have read/write restrictions with

respect to program variables, and (ii) multitolerant programs – where a program

simultaneously provides different levels of fault-tolerance to different classes of faults.

In this dissertation, we concentrate on the theoretical and the practical aspects of

synthesizing fault-tolerant distributed programs and multitolerant programs.

To synthesize a fault-tolerant program from its fault-intolerant version, Kulkarni

and Arora [1] present a synthesis method that takes a given class of faults and a

fault-intolerant program, and generates a program that is fault-tolerant to that class

of faults. The fault-intolerant program satisfies its (safety and liveness) specification

in the absence of faults and provides no guarantees in the presence of faults. The

synthesized fault-tolerant program provides a desired level of fault-tolerance in the
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presence of faults, and satisfies the safety and liveness specification of the fault-

intolerant program in the absence of faults.

Such synthesis approach has the potential to reuse the computations of the fault-

intolerant program during the synthesis of its fault-tolerant version. As a result,

reusing the computations of a fault-intolerant program preserves its important prop-

erties (e.g., efficiency) that are difficult to specify in a specification-based approach

(e.g., [2, 3, 4]) where one synthesizes a fault-tolerant program from its temporal logic

(respectively, automata-theoretic [5, 6, 7]) specification.

The synthesized fault-tolerant program provides one of the three levels of fault-

tolerance namely, failsafe, nonmasking, and masking [1]. Intuitively, in the presence of

faults, a failsafe fault-tolerant program ensures that its safety specification is satisfied.

In the presence of faults, a nonmasking fault-tolerant program recovers to states

from where its safety and liveness specification is satisfied. A masking fault-tolerant

program guarantees that in the presence of faults it recovers to states from where its

safety and liveness specification is satisfied while preserving safety during recovery.

The complexity of the synthesis presented in [1] depends on the program model.

The authors of [1] show that the complexity of synthesis is polynomial in the state

space of the fault-intolerant program in the high atomicity model. For distributed

programs (i.e., low atomicity model), Kulkarni and Arora show that the complexity

of synthesizing masking fault-tolerance is exponential. Also, in the specification-

based approach, the synthesis of fault-tolerant distributed programs (with particular

architectures) from their specification is known to be non-elementary decidable [6, 7].

A survey of the literature [7, 8] reveals that the complexity of synthesis and the

inefficiency of the synthesized programs construct the main obstacles in the automated

synthesis of fault-tolerant programs. Moreover, to the best of our knowledge, no

automated approach has been presented for adding multitolerance to programs where

a multitolerant program is subject to multiple classes of faults and provides (possibly)
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different levels of fault-tolerance corresponding to different classes of faults. Hence,

in this dissertation, we focus our attention on theoretical and practical problems in

the synthesis of fault-tolerant distributed programs and multitolerant programs.

Theoretical problems. Regarding theoretical aspects of synthesis, we address the

following problems:

• Identify the effect of safety specification model on the complexity of synthesis

It is shown in the literature that the complexity of adding fault-tolerance to

high atomicity programs is polynomial in the state space of the fault-intolerant

program if the safety specification is represented as a set of bad transitions

[1]. In [9], the authors conjecture that representing safety specification as a set

of sequences of transitions results in exponential complexity for adding fault-

tolerance. They validate their claim in the context of some examples. However,

to the best of our knowledge, there exist no significant result to verify the

claim made in [9]. Thus, it is desirable to explore the complexity of synthesis

in the case where safety specification is represented as a set of sequences of

transitions. The significance of such complexity analysis is in that it identifies

the appropriate approach for modeling safety specification where automatic

addition of fault-tolerance can be done efficiently.

• Find sufficient conditions for polynomial-time synthesis of distributed programs

Since the complexity of synthesizing fault-tolerant distributed programs from

their fault-intolerant version is exponential [1], we shall identify properties of

programs and specifications where the synthesis can be done in polynomial time.

• Reduce the complexity of synthesis by reusing the computations of the fault-

intolerant program

During the synthesis of fault-tolerant programs, there exist situations where

the computational structure of the fault-intolerant program provides necessary

3



means for satisfying fault-tolerance requirements in the presence of faults. Thus,

it is desirable to design synthesis algorithms that take advantage of such situa-

tions to reduce the complexity of synthesis.

• Identify and reuse pre-synthesized fault-tolerance components

There exist recurring sub-problems of synthesis that arise in the synthesis of

different programs (e.g., resolving deadlock states). Thus, it is desirable to

generalize the solution to common synthesis problems so that we can develop

generic solution strategies that are independent of the program at hand. In other

words, we would like to reuse the effort put in the synthesis of one program for

the synthesis of another program. To achieve this goal, we plan to identify com-

monly encountered patterns in the synthesis of programs in order to encapsulate

those patterns in the form of pre-synthesized fault-tolerance components. Also,

we would like to devise a synthesis method where we automatically specify and

add the required pre-synthesized components to the fault-intolerant programs.

• Synthesize programs that tolerate multiple classes of faults and provide different

levels of fault-tolerance to each fault-class

Dependable and fault-tolerant systems are often subject to multiple classes of

faults, and hence, these systems need to provide appropriate level of fault-

tolerance to each class of faults. Often it is undesirable or impractical to provide

the same level of fault-tolerance to each class of faults. Hence, these systems

need to tolerate multiple classes of faults, and provide a (possibly) different

level of fault-tolerance to each class. To characterize such systems, the notion

of multitolerance was introduced in [10]. The importance of such multitolerant

systems can be easily observed from the fact that several methods for designing

multitolerant programs as well as several instances of multitolerant programs

can be found (e.g., [11, 12, 13, 10]) in the literature.
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Automated synthesis of multitolerant programs has the advantage of generat-

ing fault-tolerant programs that (i) are correct by construction, and (ii) tol-

erate multiple classes of faults. However, the complexity of such synthesis is

an obstacle in the synthesis of multitolerant programs. Specifically, there exist

situations where satisfying a specific fault-tolerance requirement for one class

of faults conflicts with providing a different level of fault-tolerance to another

fault-class. Hence, it is necessary to identify situations where synthesis of mul-

titolerant programs can be performed efficiently and where heuristics need to

be developed for adding multitolerance.

Practical problems. To reduce the exponential complexity of synthesis for prac-

tical purposes and to enable the synthesis of programs that have large state space,

heuristic-based approaches are proposed in [14, 15, 9]. These heuristic-based ap-

proaches reduce the complexity of synthesis by forfeiting the completeness of synthe-

sizing fault-tolerant distributed programs. In other words, if heuristics are applicable

then a heuristic-based algorithm will generate a fault-tolerant program efficiently.

However, if the heuristics are not applicable then the synthesis algorithm will declare

failure even though it is possible to synthesize a fault-tolerant program from the given

fault-intolerant program.

The development and the implementation of heuristics are complicated by the

fact that, for a given heuristic, we need to determine how that heuristic reduces the

complexity of synthesizing fault-tolerant distributed programs. Furthermore, we need

to identify if a heuristic is so restrictive that its use will cause the synthesis algorithm

to declare failure very often. Also, in order to provide maximum efficiency, there

exist situations where we need to apply heuristics in a specific order. Moreover, the

developers of a fault-tolerant program may have additional insights about the order

in which heuristics should be applied. Thus, we have to provide the possibility of

changing the order of available heuristics (respectively, adding new heuristics) for the
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developers of fault-tolerance.

Therefore, there exists a substantial need for an extensible software framework

where (i) developers of fault-tolerant programs can synthesis fault-tolerant programs

from their fault-intolerant version; (ii) developers of heuristics can integrate new

heuristics into the framework or modify exiting heuristics, and (iii) developers can

benefit from existing automated reasoning tools (e.g., SAT solvers) in the synthesis

of fault-tolerant distributed programs.

1.1 The Outline of the Dissertation

In Chapter 2, we present preliminary concepts of programs, specifications, faults,

and fault-tolerance. We also describe synthesis algorithms presented by Kulkanri

and Arora [1] in Chapter 2 as we reuse those algorithms in this dissertation. Then,

we identify the effect of specification modeling on the complexity of synthesis in

Chapter 3. Subsequently, in Chapter 4, we show that synthesizing a failsafe fault-

tolerant distributed program from its fault-intolerant version is NP-complete. We

also present sufficient conditions for polynomial synthesis of failsafe fault-tolerant

distributed programs. In Chapter 5, we define the enhancement problem where we

enhance the level of fault-tolerance from nonmasking to masking in polynomial time.

We introduce the concept of pre-synthesized fault-tolerance components in Chapter 6,

where we present a synthesis method for automatic specification and addition of pre-

synthesized fault-tolerance components to programs during synthesis. Afterwards,

in Chapter 7, we formally state the problem of adding multitolerance to programs,

and we show that, in general, synthesizing multitolerant programs from their fault-

intolerant version is NP-complete even in the high atomicity model. In Chapter 8,

we present the design of our software framework for automatic synthesis of fault-

tolerant distributed programs. In Chapter 9, we present some ongoing research work.
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Finally, in Chapter 10, we discuss related work, contributions, and the impact of this

dissertation, and then we make concluding remarks.
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Chapter 2

Preliminaries

In this chapter, we present formal definitions of programs, problem specifications,

faults, fault-tolerance, and addition of fault-tolerance. Specifically, in Section 2.1, we

present the formal definition of programs, state predicates, and projection of program

transitions on a state predicate. In Section 2.2, we present the issues of modeling

distributed programs that is adapted from [1, 4]. Then, in Section 2.3, we adapt the

definition of specifications from Alpern and Schneider [16]. In Sections 2.4 and 2.5,

we adapt the definition of faults and fault-tolerance from Arora and Gouda [17] and

Kulkarni [18]. We represent the problem of adding fault-tolerance to fault-intolerant

programs in Section 2.6. We have adapted the problem statement of fault-tolerance

addition from [1]. In Section 2.7, we reiterate the results presented in [1] for the

synthesis of fault-tolerant programs in high atomicity model – where processes can

read/write all program variables in an atomic step. Finally, in Section 2.8, we recall

the results presented in [1] for the synthesis of distributed programs – where processes

have read/write restrictions with respect to program variables.

2.1 Program

A program p is specified by a finite set of variables, say V = {v0, v2, .., vq}, and a finite

set of processes, say P = {P0, · · · , Pn}, where q and n are positive integers. Each
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variable is associated with a finite domain of values. Let v0, v2, .., vq be variables of p,

and let D0, D2, .., Dq be their respective domains.

A state of p is obtained by assigning each variable a value from its respective

domain. Thus, a state s of p has the form: 〈l0, l1, .., lq〉 where ∀i : 0 ≤ i ≤ q : li ∈ Di.

The state space of p, Sp, is the set of all possible states of p.

A process, say Pj, consists of a set of transitions δj; each transition has the form

(s0, s1) where s0, s1 ∈ Sp. A process Pj in p is associated with a set of variables, say

rj, that Pj can read and a set of variables, say wj, that Pj can write. The transitions

of program p, δp, is the union of the transitions of its processes. In most situations in

this dissertation, we focus on the entire state space of a program and all its transitions.

Hence, for simplicity, we rewrite program p as the tuple 〈Sp, δp〉, where Sp is a finite

set of states and δp is a subset of Sp × Sp.

A state predicate X of p is any subset of Sp. We denote the cardinality of X by

|X|, where |X| represents the number of states in X. A state predicate X is closed

in a program p (respectively, δp) iff (if and only if) the following condition holds.

∀s0, s1 :: ((s0, s1)∈δp) ⇒ (s0∈X ⇒ s1∈X)

A transition predicate ∆p of p is any subset of Sp × Sp. We denote the cardinality

of ∆p by |∆p|, where |∆p| represents the number of transitions in ∆p.

A sequence of states, σ = 〈s0, s1, ...〉, is a computation of p iff the following two

conditions are satisfied (i.e., a computation is maximal):

1. If σ is infinite then ∀j : j > 0 : (sj−1, sj)∈δp, and

2. If σ is finite and terminates in state sl then there does not exist state s such

that (sl, s)∈δp, and ∀j : 0 < j ≤ l : (sj−1, sj)∈δp.

A sequence of states, 〈s0, s1, ..., sn〉, is a computation prefix of p iff ∀j : 0 < j ≤ n :

(sj−1, sj)∈δp; i.e., a computation prefix need not be maximal.
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The projection of program p on state predicate X, denoted as p|X, is the program

〈Sp, {(s0, s1) : (s0, s1)∈δp ∧ s0, s1∈X}〉. In other words, p|X consists of transitions

of p that start in X and end in X. Given two programs, p=〈Sp, δp〉 and p′=〈Sp′ , δp′〉,

we say p′ ⊆ p iff Sp′ =Sp and δp′ ⊆ δp.

Notation. When it is clear from the context, we use p and δp interchangeably. Also,

we say that a state predicate X is true in a state s iff s∈X.

2.2 Issues of Distribution

In this section, we present the issues that distribution introduces during the addition

of fault-tolerance. More specifically, we identify how read/write restrictions on a

process affect its transitions.

Write restrictions. Given a transition (s0, s1) of a program p, we can easily

identify the variables that need to be changed in order to modify the state of p from

s0 to s1. Hence, if process Pj can write only the variables in wj and the value of

a variable x /∈ wj is changed in transition (s0, s1) then (s0, s1) cannot be used in

obtaining the transitions of Pj. In other words, if Pj can write only variables in wj

then Pj cannot use the transitions in nw(wj), where

nw(wj) = {(s0, s1) : (∃x : x 6∈wj : x(s0) 6=x(s1))}

wj is the set of variables that process Pj is allowed to write.

Notation. x(s0) represents the value of a variable x in state s0.

Read restrictions. Given a single transition (s0, s1), the program p must read

all the variables in order to execute (s0, s1). For this reason, read restrictions require

us to group transitions and ensure that the entire group is included or the entire

group is excluded. As an example, consider a program consisting of two variables

a and b, with domains {0, 1}. Suppose that we have a process that cannot read b.

Now, observe that the transition from the state 〈a = 0, b = 0〉 to 〈a = 1, b = 0〉 can
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be included iff the transition from 〈a = 0, b = 1〉 to 〈a = 1, b = 1〉 is also included.

If we were to include only one of these transitions then we would need to read both

a and b. However, when these two transitions are grouped, the value of b becomes

irrelevant, and hence, we do not need read it.

More generally, consider the case where rj is the set of variables that Pj can

read, wj is the set of variables that Pj can write, and wj ⊆ rj. (In this dissertation,

we assume that wj ⊆ rj; i.e., j cannot blindly write any variable. A more general

case is discussed in [1]; we omit it here as this case suffices for our presentation.)

Now, process Pj can include the transition (s0, s1) iff Pj also includes the transition

(s′0, s
′
1) where s0 (respectively, s1) and s′0 (respectively, s′1) are identical as far as the

variables in rj are considered, and s0 (respectively, s′0) and s1 (respectively, s′1) are

identical as far as the variables not in rj are considered. We define these transitions

as group(rj)(s0, s1) for the case wj ⊆ rj, where

group(rj)(s0, s1) = {(s′0, s′1) : (∀x : x∈rj : x(s0)=x(s′0) ∧ x(s1)=x(s′1)) ∧

(∀x : x 6∈rj : x(s′0) = x(s′1) ∧ x(s0) = x(s1)) }

2.3 Specification

A specification is a set of infinite sequences of states that is suffix-closed and fusion-

closed. Suffix-closure of the set means that if a state sequence σ is in that set then so

are all the suffixes of σ. Fusion-closure of the set means that if state sequences 〈α, s, γ〉

and 〈β, s, δ〉 are in that set then so are the state sequences 〈α, s, δ〉 and 〈β, s, γ〉, where

α and β are finite prefixes of state sequences, γ and δ are suffixes of state sequences,

and s is a program state. Intuitively, fusion closure of the specification means that

an implementation of the specification must execute its next transition only based on

its current state; i.e., the history of a computation does not affect the next move of

the program.
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Following Alpern and Schneider [16], we rewrite the specification as a conjunction

of a safety specification and a liveness specification. For a suffix-closed specification,

the safety specification can be specified as a set of bad transitions [18] that must not

occur in program computations; that is, for program p, its safety specification is a

subset of Sp × Sp. To investigate the effect of the safety specification model on the

complexity of synthesis, we show, in Chapter 3, that if the specification is represented

as a set of computation prefixes (i.e., a set of finite sequences of transitions), the

complexity of synthesis significantly increases to a higher complexity class. Hence,

except in Chapter 3, in the rest of this dissertation, we represent safety specification

of programs as a set of bad transitions.

In the synthesis algorithms presented in this dissertation, we do not require the

explicit specification of the liveness properties. More specifically, we require that,

in the absence of faults, the synthesized fault-tolerant program satisfies the liveness

specification of the fault-intolerant program. In the presence of faults, the fault-

tolerant program must satisfy desired fault-tolerance properties defined in Section

2.5.

Given a program p, a state predicate S, and a specification spec, we say that p

satisfies spec from S iff (1) S is closed in p, and (2) every computation of p that starts

in a state of S is in spec. If p satisfies spec from S and S 6= {}, we say that S is an

invariant of p for spec.

For a finite sequence (of states) α, we say that α maintains (does not violate) spec

iff there exists a sequence of states β such that αβ ∈ spec. We say that p maintains

(does not violate) spec from a state predicate X iff (1) X is closed in p, and (2) every

computation prefix of p that starts in a state in X maintains spec.
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2.4 Fault

We systematically represent the faults that perturb a program by a set of transitions.

A class of faults f for program p=〈Sp, δp〉 is a subset of the set Sp × Sp. We use p[]f

to denote the transitions obtained by taking the union of the transitions in p and the

transitions in f (i.e., δp ∪ f). We say that a state predicate T is an f -span (read as

fault-span) of p from S iff the following two conditions are satisfied: (1) S ⊆ T , and

(2) T is closed in p[]f . Observe that for all computations of p that start at states

where S is true, T is a boundary in the state space of p up to which (but not beyond

which) the state of p may be perturbed by the occurrence of the transitions in f .

Now, we define the computations of p in the presence of faults, f . We say that

a sequence of states, σ = 〈s0, s1, ...〉, is a computation of p in the presence of f iff the

following three conditions are satisfied.

1. If σ is infinite then ∀k : k > 0 : (sk−1, sk)∈(δp ∪ f),

2. If σ is finite and terminates in state sl then there does not exist state s such

that (sl, s)∈δp, and

3. ∃n : n ≥ 0 : (∀k : k > n : (sk−1, sk)∈δp).

The first requirement captures that in each step, either a program transition or

a fault transition is executed. The second requirement captures that faults do not

have to execute; i.e., if the program reaches a state where only a fault transition

can be executed then the fault transition need not be executed. It follows that

fault transitions cannot be used to deal with deadlocked states. Finally, the third

requirement captures that the number of fault occurrences in a computation is finite.

Such assumption also appears in previous work [19, 20, 17, 21].

Program and faults representation. We use Dijkstra’s guarded commands [22] to

represent the transitions of programs and faults. A guarded command (action) is of
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the form grd → st, where grd is a state predicate and st is a function from Sp to

Sp (i.e., an assignment) that updates program variables. Specifically, the guarded

command grd → st represents the following set of transitions:

{(s0, s1) : grd is true at s0 and the atomic execution of st at s0 takes the program

to state s1}

2.5 Fault-Tolerance

In this section, we formally define what it means for a program to be fault-tolerant.

We define three levels of fault-tolerance; failsafe, nonmasking, and masking. In the

absence of faults, irrespective of the level of fault-tolerance, a program should satisfy

its specification, say spec, from its invariant. The level of fault-tolerance characterizes

the extent to which the program satisfies spec in the presence of faults. Intuitively,

a failsafe fault-tolerant program ensures that in the presence of faults, the safety

of spec is maintained. A nonmasking fault-tolerant program ensures that in the

presence of faults, the program recovers to states from where spec is satisfied. A

masking fault-tolerant program ensures that in the presence of faults the safety of

spec is maintained and the program recovers to states from where spec is satisfied.

Thus, we formally define these three levels of fault-tolerance for a program p, its

invariant S, its specification spec, and a class of faults f as follows:

Program p is failsafe f-tolerant for spec from S iff the following two conditions hold:

(1) p satisfies spec from S, and (2) there exists T such that T is an f -span of p from

S and p[]f maintains spec from T .

Program p is nonmasking f-tolerant for spec from S iff the following two conditions

hold: (1) p satisfies spec from S, and (2) there exists T such that T is an f -span of p

from S and every computation of p[]f that starts from a state in T has a state in S.

Program p is masking f-tolerant for spec from S iff the following two conditions

hold: (1) p satisfies spec from S, and (2) there exists T such that T is an f -span of p
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from S, p[]f maintains spec from T , and every computation of p[]f that starts from

a state in T has a state in S .

Note that a specification is a set of infinite sequences of states. Hence, if p satisfies

spec from S then all computations of p that start in S must be infinite. In the context

of nonmasking and masking fault-tolerance, every computation from the fault-span

reaches a state in its invariant. Hence, if fault-span T is used to show that p is

nonmasking (respectively, masking) f -tolerant for spec from S then all computations

of p that start in a state in T must also be infinite. Also, note that p is allowed

to contain a self-loop of the form (s0, s0); we use such a self-loop whenever s0 is an

acceptable fixpoint of p.

Notation. Henceforth, whenever the program p is clear from the context, we will

omit it; thus, “S is an invariant” abbreviates “S is an invariant of p” and “f is a

fault” abbreviates “f is a fault for p”. Also, whenever the specification spec and the

invariant S are clear from the context, we omit them; thus, “f -tolerant” abbreviates

“f -tolerant for spec from S”.

2.6 The Problem of Adding Fault-Tolerance

In this section, we reiterate the problem of adding fault-tolerance presented in [1].

The addition problem requires a fault-tolerant program p′ (with its invariant S ′) to

behave similar to its fault-intolerant version, say p, in the absence of a given class of

faults f . In the presence of f , p′ must provide a desired level of fault-tolerance, say L,

where L could be failsafe, nonmasking, or masking. Since p′ must behave similar to

p in the absence of faults, Kulkarni and Arora [1] stipulate the following conditions:

1. S ′ must be a subset of S. Otherwise, if there exists a state s ∈ S ′ where s /∈ S

then, in the absence of faults, p′ can reach s and create new computations that

do not belong to p. Thus, p′ will include new ways of satisfying spec from s in

the absence of faults.
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2. p′|S ′ must be a subset of p|S ′. If p′|S ′ includes a transition that does not belong

to p|S ′ then p′ can include new ways for satisfying spec in the absence of faults.

Thus, the formal definition of the problem of adding fault-tolerance is as follows:

The Addition Problem

Given p, S, spec, and faults f , identify p′ and S ′ such that

S ′ ⊆ S,

p′|S ′ ⊆ p|S ′, and

p′ is L f -tolerant for spec from S ′, where

L can be failsafe, nonmasking, or masking.

The decision problem of adding fault-tolerance to fault-intolerant programs (from

[1]) is as follows:

The Decision Problem

For a given fault-intolerant program p, its invariant S, the specification spec,

and faults f , does there exist a fault-tolerant program p′ and the invariant

S ′ such that S ′ ⊆ S, p′|S ′ ⊆ p|S ′, and p′ is failsafe/nonmasking/masking

fault-tolerant for spec from S ′?

Remark. Given a program p′ and its invariant S ′ that meet the requirements of

the decision problem, every computation of p′[]f that starts in the fault-span reaches

a state in S ′. From that state in S ′, a computation of p′ is also a computation of p

(since S ′ ⊆ S and p′|S ′ ⊆ p|S ′). Since the fault-intolerant program p satisfies its

liveness specification from S, every computation of p has a suffix that is in the liveness

specification. It follows that every computation of p′ that starts in its fault-span will

eventually reach a state from where it continuously satisfies its liveness specification.

For this reason, liveness specification is not included in the above problem statement.
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2.7 Synthesis of Fault-Tolerance in High Atomic-

ity

The properties of synthesized high atomicity fault-tolerant programs identify an upper

bound on the abilities of fault-tolerant distributed programs. As a result, in the

synthesis of fault-tolerant distributed programs, there exist situations where we need

to verify the possibility of solving a problem in the high atomicity model (e.g., see

Chapter 5). Hence, we recall synthesis algorithms presented by Kulkarni and Arora

[1] for the synthesis of fault-tolerant programs in the high atomicity model.

We represent three synthesis algorithms presented in [1] for adding three different

levels of fault-tolerance to fault-intolerant programs. These algorithms synthesize a

(failsafe/nonmasking/masking) fault-tolerant program in the high atomicity model

where there exist no read/write restrictions for the program processes with respect

to program variables. In particular, we present Add Failsafe algorithm in Subsection

2.7.1. Then, in Subsection 2.7.2, we show how one synthesizes a nonmasking fault-

tolerant program. Finally, in Subsection 2.7.3, we describe the algorithm Add Masking

where one adds masking fault-tolerance to fault-intolerant programs.

Throughout this section, we denote a fault-intolerant program with p, its invariant

with S, its specification with spec, and a given class of faults with f . Also, we denote

a synthesized fault-tolerant program and its invariant with p′ and S ′.

2.7.1 Synthesizing Failsafe Fault-Tolerance

The algorithm Add Failsafe (cf. Figure 2.1) takes p, S, spec, and faults f . It calculates

program p′ with the invariant S ′ where p′ is failsafe f -tolerant for spec from S ′.

To synthesize a fault-tolerant program p′ from the given fault-intolerant program

p, Add Failsafe calculates a set of states, say ms, from where fault transitions alone

may violate safety of spec. The fault-tolerant program p′ must never reach a state

in ms, otherwise, faults may directly violate the safety of spec. Thus, p′ should not
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Add failsafe(p; f : transitions, S : state predicate, spec : speci�cation)f ms := fs0 : 9s1; s2; :::sn :(8j : 0�j<n : (sj ; s(j+1)) 2 f) ^ (s(n�1); sn) violates spec g;mt := f(s0; s1) : ((s12ms) _ (s0; s1) violates spec) g;S0 := ConstructInvariant(S �ms; p�mt);if (S0=fg) declare no failsafe f-tolerant program p0;return ;; ;;else p0 :=ConstructTransitions(p�mt; S0)return p0; S0;gConstructInvariant(S : state predicate, p : transitions)// Returns the largest subset of S such that computations of p within that subset are in�nitef while (9s0 : s02S : (8s1 : s12S : (s0; s1) 62p)) S := S � fs0g gConstructTransitions(p : transitions, S : set of states)f return p�f(s0; s1) : s02S ^ s1 62 Sg g
Figure 2.1: Synthesizing failsafe fault-tolerance in the high atomicity model.

include the transitions that reach ms or directly violate safety of spec (i.e., set of mt

transitions).

To calculate the invariant S ′, the algorithm Add Failsafe returns the largest subset

of S−ms where the computations of p−mt are infinite and include no transitions of

mt (cf. Figure 2.1). The routine Construct Invariant calculates such a subset of S as

the invariant of p′. Since S ′ must be closed in transitions of p′, Add Failsafe removes

transitions that start in S ′ and end outside S ′ using the routine Construct Transition.

Soundness and completeness. The algorithm Add Failsafe is sound; i.e., the

synthesized program p′ and its invariant S ′ satisfy the requirements of the addition

problem stated in Section 2.6. Also, Add Failsafe is complete; i.e., if there exists a

failsafe fault-tolerant program p′′ derived from p that satisfies the requirements of the

addition problem then Add Failsafe will find p′′ and its invariant S ′′ [1].

2.7.2 Synthesizing Nonmasking Fault-Tolerance

To add nonmasking fault-tolerance to fault-intolerant programs, Kulkarni and Arora

present algorithm Add Nonmasking (cf. Figure 2.2). The Add Nonmasking algorithm

takes p, S, spec, and faults f , and then, synthesizes program p′ with its invariant S ′.
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Add nonmasking(p, f : transitions, S : state predicate, spec : specification)
{

S′ := S;
p′ := (p|S) ∪ {(s0, s1) : s0 6∈S ∧ s1∈S}
return p′, S′;

}

Figure 2.2: Synthesizing nonmasking fault-tolerance in the high atomicity model.

The invariant S ′ is equal to S since Add Nonmasking only adds recovery transitions

to S. The set of transitions of p′ is the union of transitions of p|S and recovery

transitions.

Soundness and completeness. The algorithm Add Nonmasking is sound; i.e., the

synthesized program p′ and its invariant S ′ satisfy the requirements of the addition

problem (cf. Section 2.6). Also, Add Nonmasking is complete; i.e., if there exists a

nonmasking fault-tolerant program p′′ derived from p that satisfies the requirements

of the addition problem then Add Nonmasking will find p′′ and its invariant S ′′ [1].

2.7.3 Synthesizing Masking Fault-Tolerance

In the presence of faults, a masking fault-tolerant program must maintain safety

of spec and provide safe recovery to its invariant. The Add Masking algorithm (cf.

Figure 2.3) takes p, S, spec, and faults f , and then generates masking fault-tolerant

program p′ with its invariant S ′ and its f -span T ′.

Since no masking fault-tolerant program is allowed to reach a state from where

fault transitions may violate safety, the invariant of the masking fault-tolerant pro-

gram must include no ms state. Moreover, the fault-span of the masking program p′

must not include any state of ms. Hence, Add Masking sets the initial value of fault-

span T1 to true−ms (cf. Line 4 in Figure 2.3). Also, since a masking fault-tolerant

program should satisfy safety of spec from every state in its fault-span (i.e., in the

presence of faults), the set of transitions of the masking program must not include

a transition of mt. Thus, Add Masking calculates the initial invariant S1 (cf. Figure

2.3) by removing ms states from S and mt transitions from the set of transitions of
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p (cf. Line 3 in Figure 2.3).Add masking(p; f : transitions, S : state predicate, spec : speci�cation)f ms := fs0 : 9s1; s2; :::sn : (1)(8j : 0�j<n : (sj ; s(j+1)) 2 f) ^ (s(n�1); sn) violates spec g;mt := f(s0; s1) : ((s12ms) _ (s0; s1) violates spec) g; (2)S1 := ConstructInvariant(S �ms; p�mt); (3)T1 := true�ms; (4)repeat (5)T2; S2 := T1; S1; (6)p1 := pjS1 [ f(s0; s1) : s0 62S1 ^ s02T1 ^ s12T1g�mt; (7)T1 := ConstructFaultSpan(T1 � fs : S1 is not reachable from s in p1 g, f); (8)S1 := ConstructInvariant(S1 ^ T1; p1); (9)if (S1=fg _ T1=fg) (10)declare no masking f-tolerant program p0 exists; (11)return ;; ;; ;; (12)until (T1=T2 ^ S1=S2); (13)For each state s : s2T1 : (14)Rank(s) = length of the shortest computation pre�x of p1 (15)that starts from s and ends in a state in S1;p0 := f(s0; s1) : ((s0; s1)2p1) ^ (s02S1 _ Rank(s0)>Rank(s1)g); (16)S0 := S1; (17)T 0 := T1 (18)return p0; S0; T 0; (19)gConstructFaultSpan(T : state predicate, f : transitions)// Returns the largest subset of T that is closed in f .f while (9s0; s1 : s02T ^ s1 62T ^ (s0; s1)2f) T := T � fs0gg
Figure 2.3: Synthesizing masking fault-tolerance in the high atomicity model.

In the iterative steps between Lines 5 to 13 in Figure 2.3, the Add Masking algo-

rithm searches for a valid invariant and its corresponding fault-span for the masking

fault-tolerant program. Towards this end, in each iteration, Add Masking identifies

the set of transitions of p1 that consists of transitions of p on the current invariant

S1 (i.e., p|S1) and every transition in the fault-span T1 that does not violate the clo-

sure of S1 and does not belong to mt (cf. Line 7 in Figure 2.3). Afterwards, using

Construct FaultSpan routine, the Add Masking algorithm calculates the largest subset

of T1 that is closed in p1[]f . Since the invariant of the masking program must be

a subset of its fault-span, Add Masking recalculates the invariant S1 considering the

recalculated fault-span T1 (cf. Line 9 in Figure 2.3).

The Add Masking algorithm continues the above iterative procedure until there
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exist no more changes in S1 and T1, or S1 becomes empty. When S1 becomes empty,

the Add Masking algorithm declares that there exists no masking fault-tolerant pro-

gram synthesized from p. Otherwise, there must exist a non-empty subset of S that

satisfies the requirements of the addition problem (cf. Section 2.6). If there exists

such subset S ′ of S then Add Masking will guarantee safe recovery from states outside

invariant S ′ to S ′, and there will be no cycles in T ′−S ′ (cf. Lines 14-16 in Figure

2.3).

Soundness and completeness. The algorithm Add Masking is sound; i.e., the

synthesized program p′ and its invariant S ′ satisfy the requirements of the addition

problem. Also, Add Masking is complete; i.e., if there exists a masking fault-tolerant

program p′′ derived from p that satisfies the requirements of the addition problem

then Add Masking will find p′′ and its invariant S ′′ [1].

2.8 Synthesis of Fault-Tolerant Distributed Pro-

grams

In this section, we represent the non-deterministic algorithm presented by Kulkarni

and Arora [1] for the synthesis of distributed fault-tolerant programs. We also recall

a theorem from [1] about the complexity of synthesizing fault-tolerant distributed

programs.

Kulkarni and Arora [1] present the non-deterministic algorithm Add ft (cf. Figure

2.4) for the addition of fault-tolerance to distributed programs in polynomial time.

The Add ft algorithm takes the transition groups g0, · · · , gmax (that represent a fault-

intolerant distributed program p), its invariant S, its specification spec, and a class of

faults f . Afterwards, Add ft calculates the set of ms states from where safety can be

violated by the execution of fault transitions alone. Also, Add ft computes the set of

transitions mt that violate safety or reach a state in ms. Then, the Add ft algorithm

non-deterministically guesses the fault-tolerant program, p′, its invariant, S ′ and its
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fault-span, T ′.

Add ft(p, f : set of transitions, S : state predicate, spec : specification,
g0, g1, ..., gmax : groups of transitions)

{
ms := {s0 : ∃s1, s2, ...sn : (∀j : 0≤j<n : (sj , s(j+1)) ∈ f) ∧ (s(n−1), sn) violates spec };
mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) };

Guess S′, T ′, and p′ :=
⋃

(gi : gi is chosen to be included in the fault-tolerant program);
Verify the following

(F1) p′|S′⊆p|S′;
(F2) S′ ⊆ T ′; T ′ is closed in p′[]f ; // T ′ is a fault-span of p′.
(F3) T ′ ∩ ms = {}; (p′|T ′) ∩ mt = {}; // Safety cannot be violated from states in T ′.
(F4) (∀s0 : s0∈ T ′ : (∃s1 :: (s0, s1)∈p′)); // T ′ does not have deadlocks.
(F5) S′ 6={}; S′ ⊆ S; S′ is closed in p′; // S′ is an invariant of p′.
(F6) p′|(T ′−S′) is acyclic; // p′ cannot stay in (T ′ − S′) forever.

}

Figure 2.4: A non-deterministic algorithm for adding fault-tolerance to distributed pro-
grams.

The algorithm Add ft verifies that the synthesized (guessed) fault-tolerant program

satisfies the three conditions of the addition problem (cf. Section 2.6) depending on

the required level of fault-tolerance. This goal is achieved by verifying the six formulae

F1-F6. The first formula F1 verifies that p′|S ′ ⊆ p|S ′ is true. The second formula,

F2, checks that T ′ is a valid fault-span. The third formula, F3, ensures that safety is

not violated from any state in T ′. The fourth formula, F4, verifies that the program

does not deadlock in a state in T ′. The fifth formula, F5, checks that S ′ is a valid

invariant, i.e., S ′ is nonempty and S ′ is closed in p′. The formula F5 also verifies if

S ′ is a subset of S. Finally, the formula F6 verifies that the program cannot stay in

T ′ − S ′ forever.

For synthesizing failsafe fault-tolerant programs, we do not need verify F4 and F6

as a failsafe program need not provide recovery to S ′. Likewise, in the synthesis of a

nonmasking fault-tolerant program, there exists no need to verify F3 as a nonmasking

program is allowed to temporarily violate safety of spec in the presence of faults.

Since the algorithm Add ft is non-deterministic, there exists no specific order in

the verification of F1-F6. However, a deterministic implementation of Add ft im-
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poses a specific order for verifying (a subset of) F1-F6 in order to satisfy one of

the requirements of the addition problem. We call such a deterministic strategy a

heuristic.

Regarding the complexity of Add ft, Kulkarni and Arora [1] show that each one of

the conditions F1-F6 can be verified in polynomial time in the state space of p. As

a result, Add ft is in NP. We reiterate this result in the following theorem.

Theorem 2.1 The problem of synthesizing failsafe/nonmasking/masking fault-

tolerant distributed programs is in NP.
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Chapter 3

The Effect of Safety Specification

Model on the Complexity of

Synthesis

In this chapter, we focus on the effect of safety specification model on the complex-

ity of adding masking fault-tolerance to high atomicity programs. We consider two

approaches for modeling safety specifications. The first approach is based on the mod-

eling used in [1], where the safety specification is specified in terms of a set of bad

transitions that must not occur in program computations. In other words, intuitively,

a program computation violates safety specification if there exists a bad transition

in that computation. We denote this model as the bad transition (BT) model (cf.

Section 2.3 for precise definition).

The second approach is a restricted model of the safety specification specified by

Alpern and Schneider [23]. In [23], the safety specification is specified as a set of

computation prefixes, where a computation prefix is a finite sequence of transitions.

A computation violates the safety specification if one of its prefixes is ruled out by

the safety specification. This model is more general than that in [1]; given the safety
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specification specified in terms of ‘bad transitions’ that should not occur in program

computations, we can obtain the corresponding set of prefixes that should not occur

in program computations.

As a special case of the model presented by Alpern and Schneider [23], we intro-

duce a model where safety specification is specified in terms of a set of sequences of at

most two transitions. In this model, a computation violates the safety specification if

and only if it contains any sequence ruled out by the safety specification. We denote

this model as the bad pair (BP) model. It is straightforward to observe that the BP

model is a generalization of the BT model and a specialization of the model presented

by Alpern and Schneider.

We show that synthesizing a masking fault-tolerant program from its fault-

intolerant version in the BP model is significantly more complex than synthesizing a

fault-tolerant program in the BT model. Specifically, for high atomicity programs, the

synthesis in the BT specification model can be performed in polynomial time. (This

result has been previously shown in [1].) However, for the same program model,

the synthesis in the BP specification model is NP-complete. (This result is shown

in this chapter.) It follows that the problem of adding fault-tolerance for the case

where safety is represented as a set of computation prefixes that should not occur in

a program computation is NP-hard. With this result, we argue that the synthesis of

fault-tolerant programs will be more successful if we focus on more restrictive spec-

ifications from the BT model. Hence, in the rest of this dissertation, we represent

safety specification in the BT model.

The organization of this chapter is as follows: In Section 3.1, we show that adding

masking fault-tolerance to high atomicity programs is NP-complete for the BP model.

In Section 3.2, we present a summary of this chapter.
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3.1 NP-Completeness Proof

In this section, we show that, in general, the problem of synthesizing masking fault-

tolerant programs from their fault-intolerant version becomes NP-complete if the

safety specification is specified in the BP model. Towards this end, in Section 3.1.1,

we present a mapping between a given instance of the 3-SAT problem and an instance

of the (decision) problem of adding masking fault-tolerance. Then, in Section 3.1.2,

we show that the given 3-SAT instance is satisfiable iff the answer to the decision

problem is affirmative.

3.1.1 Mapping 3-SAT to the Addition of Masking Fault-

Tolerance

The problem statement for the 3-SAT problem is as follows:

Given is a set of propositional variables, x1, x2, ..., xn, and a Boolean formula y =

y1 ∧ y2 ∧ ... ∧ yM , where each yj (1 ≤ j ≤ M) is a disjunction of exactly three

literals.

Does there exist an assignment of truth values to x1, x2, ..., xn such that y is satisfi-

able?

Next, we identify each entity of the instance of the problem of adding fault-

tolerance, based on the given 3-SAT formula. The instance of the decision problem

of synthesizing masking fault-tolerance consists of the fault-intolerant program, p, its

invariant, S, its specification spec, and a class of faults f .

The state space and the invariant of the fault-intolerant program, p. The

invariant, S, of the fault-intolerant program, p, includes only one state, say s. Corre-

sponding to the propositional variables and disjunctions of the given 3-SAT instance,

we include additional states outside the invariant (cf. Figure 3.1). Specifically, for

each propositional variable xi, we introduce three states ai, bi, and ci (1 ≤ i ≤ n).

Also, for simplicity, we introduce a propositional variable xn+1 which is always true,
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and corresponding to xn+1, we introduce two states an+1 and bn+1. For each disjunc-

tion yj, we introduce a state dj outside the invariant (1 ≤ j ≤ M).

The transitions of the fault-intolerant program. For the convenience of repre-

senting safety specification, we classify transitions as short, long, and medium transi-

tions. The only transition inside the invariant of the fault-intolerant program is the

medium transition (s, s). Also, we introduce short transitions (ai, bi) and (bi, ci) for

each propositional variable xi. We also introduce a short transition (an+1, bn+1) for

xn+1.

Moreover, corresponding to each propositional variable xi, we introduce long tran-

sitions (bi, ai+1), (bi, bi+1), (ci, ai+1), and (ci, bi+1) (1 ≤ i ≤ n). From bn+1, we intro-

duce a long transition (bn+1, s) to the invariant. Corresponding to each disjunction

yj, we have the following long transitions:

• If xi is a literal in yj then we include the long transition (dj, ai).

• If ¬xi is a literal in yj then we include the long transition (dj, bi).

i+1
b
i+1

a
i+1c

i
b
i

a
i

j
d

.. .. . .

.

.

fault

s

Long

Short 

Medium

c

Legend

Figure 3.1: The states and the transitions corresponding to the propositional variables in
the 3-SAT formula. (Except for transitions marked as fault all are program transitions.
Also, note that the program has no long transitions that originate from ai and no short
transitions that originate from ci.)

Fault transitions. The class of faults f is equal to the set of medium transitions

{(s, dj) : 1 ≤ j ≤ M}.

The safety specification of the fault-intolerant program, p. Safety will be

violated if a short (respectively, long) transition is followed by another short (respec-

tively, long) transition. Note that (s, s) and fault transitions are medium transitions
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(cf. Figure 3.1). Hence, they can be followed by (respectively, preceded by) any

transition. Also, all transitions except those identified above violate the safety spec-

ification. This is to ensure that transitions such as (dj, s), (ai, s), (bi, s), and (ci, s)

((1 ≤ j ≤ M) ∧ (1 ≤ i ≤ n)) cannot be used for recovery.

3.1.2 Reduction from 3-SAT

In this section, we show (with Lemmas 3.1 and 3.2) that the given instance of 3-SAT is

satisfiable iff masking fault-tolerance can be added to the problem instance identified

in Section 3.1.1.

Lemma 3.1 If the given 3-SAT formula is satisfiable then there exists a masking

fault-tolerant program for the instance of the decision problem identified in Section

3.1.1.

Proof. Since the 3-SAT formula is satisfiable, there exists an assignment of truth

values to the propositional variables xi, 1 ≤ i ≤ n, such that each yj, 1 ≤ j ≤ M ,

is true. Now, we identify a masking fault-tolerant program, p′, that is obtained by

adding fault-tolerance to the fault-intolerant program p identified in Section 3.1.1.

The invariant of p′ is the same as the invariant of p (i.e., {s}). We derive the

transitions of the fault-tolerant program p′ as follows. (As an illustration, we have

shown the partial structure of p′ where x1 = true, x2 = false, and x3 = true in

Figure 3.2.)

• For each propositional variable xi, 1 ≤ i ≤ n, if xi is true then we include the

short transition (ai, bi). In this case, we also include the long transition (bi, ai+1)

if xi+1 is true, or (bi, bi+1) if xi+1 is false.

• For each propositional variable xi, 1 ≤ i ≤ n, if xi is false then we include the

short transition (bi, ci). In this case, we also include the long transition (ci, ai+1)

if xi+1 is true, or (ci, bi+1) if xi+1 is false.

• We include the transitions (an+1, bn+1) and (bn+1, s) corresponding to xn+1.
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• For each disjunction yj that includes xi, we include the transition (dj, ai) iff xi

is true.

• For each disjunction yj that includes ¬xi, we include the transition (dj, bi) iff

xi is false.
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Figure 3.2: The partial structure of the masking fault-tolerant program

Now, we show that p′ is masking fault-tolerant in the presence of faults f .

• p′ in the absence of faults. p′|S = p|S. Thus, p′ satisfies spec in the absence

of faults.

• p′ is masking f-tolerant for spec from S. To show this result, we let T ′ be

the set of states reached in the computations of p′[]f starting from s.

– p′ satisfies its safety specification from T ′. Since the instance of the

3-SAT formula is satisfiable, each propositional variable xi is assigned a

unique truth value. Thus, for each pair of transitions (ai, bi) and (bi, ci),

one of them is excluded in the set of transitions of p′. Hence, a computation

of p′ cannot include two consecutive short transitions. Also, the only way

to execute two consecutive long transitions in the original fault-intolerant

program is to execute a long transition that terminates in state bi, 1 ≤ i ≤

n, and then execute a long transition that originates in bi. If the former

transition is included then xi is assigned the truth value false. However, in
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this case, no outgoing long transition from bi is included. Thus, p′ cannot

execute two consecutive long transitions.

– Starting from every state in T ′, a computation of p′ reaches s. By

construction, p′ contains no cycles outside the invariant. Hence, it suffices

to show that p′ does not deadlock in T ′ − S ′. Now, let yj = xi ∨ ¬xk ∨ xr

be a disjunction in the 3-SAT formula. Since yj evaluates to true, p′

includes a transition from {(dj, ai), (dj, bk), (dj, ar)}. Also, by considering

the truth values of xi and xi+1, 1 ≤ i ≤ n, we observe that for every state

in {ai, bi, ci} in T ′ there is a path that reaches a state in {ai+1, bi+1, ci+1}.

Finally, from an+1 (respectively, bn+1) there is an outgoing transition to

bn+1 (respectively, s). It follows that p′ does not deadlock in T ′ − S.

Lemma 3.2 If there exists a masking fault-tolerant program for the instance of the

decision problem identified earlier then the given 3-SAT formula is satisfiable.

Proof. Before we use the masking fault-tolerant program p′ to identify the

truth value assignment to the propositional variables in the 3-SAT formula, we make

some observations about p′. Let S ′ be the invariant of p′ and let T ′ be the fault-span

used to show the masking fault-tolerance property of p′. Since S ′ 6= {} and S ′ ⊆ S,

the conditions S ′ = S and p|S ′ = p′|S ′ hold.

Since faults may directly perturb p′ to dj (1 ≤ j ≤ M), the condition dj ∈ T ′

holds. Thus, p′ must provide safe recovery from each dj. As a result, for each dj,

there exists 1 ≤ i ≤ n such that either (dj, ai) or ((dj, bi) and (bi, ci)) is included in

p′|T ′; i.e., either ai or ci must be reachable. Hence, we have

Observation 3.3. There exists 1 ≤ i ≤ n such that either ai ∈ T ′ or ci ∈ T ′.

Now, consider the case where ai ∈ T ′ and ci ∈ T ′. In this case, (ai, bi) must be

included as all transitions terminating in ai are long transitions. Further, if ci ∈ T ′

then (bi, ci) must be included since it is the only transition that reaches ci. In this
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case, p′[]f can violate safety by executing (ai, bi) and (bi, ci). Hence, we have

Observation 3.4. If ai ∈ T ′ then ci /∈ T ′.

Moreover, if ai ∈ T ′ then (ai, bi) ∈ p′|T ′ since all transitions terminating in ai

are long transitions. Hence, bi ∈ T ′. Now, to guarantee safe recovery from bi, p′

must include either (bi, ai+1) or ((bi, bi+1) and (bi+1, ci+1)). Thus, either ai+1 ∈ T ′ or

ci+1 ∈ T ′. Also, if ci ∈ T ′ then either (ci, ai+1) or ((ci, bi+1) and (bi+1, ci+1)) must be

included. Thus, we have

Observation 3.5. If (ai ∈ T ′)∨ (ci ∈ T ′) holds then we have (∀l : i < l ≤ n : ((al ∈

T ′) ∨ (cl ∈ T ′))).

Now, let sm be the smallest value for which ((asm ∈ T ′)∨(csm ∈ T ′)) holds. Based

on the Observation 3.5, we have (∀l : sm < l ≤ n : (al ∈ T ′) ∨ (cl ∈ T ′)). Hence, we

make value assignment to the literals of the 3-SAT formula as follows:

• For t < sm, we assign true to xt.

• For sm ≤ t, if at ∈ T ′ then xt = true. And, if ct ∈ T ′ then xt = false.

Based on the observations 3.3-3.5, it is straightforward to observe that a unique

value is assigned to each xi (1 ≤ i ≤ n). To complete the proof, we need to show

that, with this truth-value assignment, the 3-SAT formula is satisfiable. We show

this for a disjunction yj (1 ≤ j ≤ M). Wlog, let yj = xi ∨ x′
k ∨ xr. Since state dj can

be reached by the occurrence of a fault from s, p′ must provide safe recovery from dj.

Since the only safe transitions from dj are those corresponding to states ai, bk and

ar, p′ must include at least one of the transitions (dj, ai), (dj, bk), or (dj, ar). Now, if

(dj, ai) ∈ p′ then ai ∈ T ′, and hence, xi is assigned true. Further, if (dj, bk) ∈ p′ then

no long transition from bk can be included as it would allow p′ to execute two long

transitions successively. Hence, p′ must include (bk, ck). Thus, ck ∈ T ′, and hence, xk

is assigned false. It follows that irrespective of which transition is included from dj,

yj evaluates to true. Therefore, the 3-SAT formula is satisfiable.
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Theorem 3.6 If the safety specification is specified in the BP model then the problem

of adding masking fault-tolerance to high atomicity programs is NP-complete.

Proof. The NP-hardness of adding masking fault-tolerance in the BP model follows

from Lemmas 3.1 and 3.2. To show that this problem is in NP, we proceed as follows:

Given an input for the problem of adding fault-tolerance, we guess fault-tolerant

program p′, its invariant S ′ and its fault-span T ′. Now, we need to verify that (1)

S ′ ⊆ S, (2) S ′ is closed in p′, (3) p′|S ′ ⊆ p|S ′, (4) T ′ is closed in p′[]f , (5) p′[]f does

not violate safety in T ′, (6) p′ does not deadlock in T ′ −S ′, (7) p′|(T ′ −S ′) is acyclic.

Since each of these conditions can be verified in polynomial time in the state space,

the theorem follows.

Corollary 3.7 If the safety specification is specified by a set of computational prefixes

that should not occur in program computations (as in [23]) then the problem of adding

masking fault-tolerance is NP-hard in the program state space.

3.2 Summary

In this chapter, we investigated the effect of the representation of the safety specifica-

tion on the complexity of adding masking fault-tolerance. It is shown in the literature

[1] that if one represents the safety specification as a set of bad transitions (denoted

BT model) that must not occur in program computations then adding fault-tolerance

to high atomicity programs – where processes can read/write all program variables

in an atomic step – can be done in polynomial time in the state space of the input

fault-intolerant program. However, in this chapter, we showed that if safety is repre-

sented by a set of sequences of transitions, where each sequence contains at most two

transitions (denoted bad pair (BP) model), then adding fault-tolerance to programs

is NP-complete. With this result, we argue that adding fault-tolerance to existing

programs can be done more efficiently if we focus on the BT model.

Although the BT model is a restricted version of the BP model, it is general enough

32



to capture other representations for modeling safety considered in the literature. For

example, in the bad state (BS) model (e.g., [2, 4]), a computation violates safety if

it reaches a state that is ruled out by the safety specification. The BS model is a

restrictive version of the BT model. Hence, the algorithms in [1] can be extended to

the BS model. Thus, the complexity for the BS model is (approximately) in the same

complexity class as that of the BT model.

Also, we observe that the expressiveness of the BT model has the potential to

capture the safety specification of practical problems. As an illustration, we model

the safety specification of several examples including a simplified version of an aircraft

altitude switch (cf. Section 8.5) throughout this dissertation. As a result, we argue

that although the results of this chapter limit the applicability of efficient addition of

fault-tolerance to the BT model, this model can capture a broad range of interesting

problems in the synthesis of fault-tolerant programs. Therefore, in the rest of this

dissertation, we represent safety specification of programs in the BT model.
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Chapter 4

Synthesizing Failsafe

Fault-Tolerant Distributed

Programs

In this chapter, we focus on the synthesis of failsafe fault-tolerant distributed pro-

grams from their fault-intolerant versions. First, we show that synthesizing a failsafe

fault-tolerant distributed program from its fault-intolerant version (i.e., adding failsafe

fault-tolerance to distributed fault-intolerant programs) is NP-complete. To achieve

this goal, we reduce the 3-SAT problem to the decision problem of synthesizing a

failsafe fault-tolerant program. Second, we identify the restrictions that can be im-

posed on specifications and fault-intolerant programs in order to ensure that failsafe

fault-tolerance can be synthesized in polynomial time. Towards this end, we iden-

tify a class of specifications, namely monotonic specifications, and a class of programs,

namely monotonic programs. We show that failsafe fault-tolerance can be synthesized

in polynomial time if monotonicity restrictions on the program and the specification

are met.

As another important contribution of this chapter, we evaluate the role of restric-
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tions imposed on specification and fault-intolerant program. In this context, we show

that if monotonicity restrictions are imposed only on the specification (respectively,

the fault-intolerant program) then the problem of adding failsafe fault-tolerance will

remain NP-complete. Finally, we show that the class of monotonic specifications con-

tains well-recognized [24, 25, 26, 27, 28] problems of distributed consensus, atomic

commitment and Byzantine agreement.

We proceed as follows: In Section 4.1, we state the problem of adding failsafe fault-

tolerance to fault-intolerant programs. In Section 4.2, we show the NP-completeness

of the problem of adding failsafe fault-tolerant distributed programs. In Section

4.3, we precisely define the notion of monotonic specifications and monotonic pro-

grams, and identify their role in reducing the complexity of synthesizing failsafe

fault-tolerance. Finally, we give examples of monotonic specifications and monotonic

programs in Section 4.4, and summarize this chapter in Section 4.5.

4.1 Problem Statement

In this subsection, we formally state the problem of synthesizing failsafe fault-

tolerance. Our goal is to only add failsafe fault-tolerance to generate a program

that reuses a given fault-intolerant program. In other words, we require that any new

computations that are added in the fault-tolerant program are solely for the purpose

of dealing with faults; no new computations are introduced when faults do not occur.

Now, consider the case where we begin with the fault-intolerant program p, its

invariant S, its specification, spec, and faults f . Let p′ be the fault-tolerant program

derived from p, and let S ′ be an invariant of p′. Since S is an invariant of p, all the

computations of p that start from a state in S satisfy the specification, spec. Since

we have no knowledge about the computations of p that start outside S and we are

interested in deriving p′ such that the correctness of p′ in the absence of faults is

derived from the correctness of p, we must ensure that p′ begins in a state in S; i.e.,
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the invariant of p′, say S ′, must be a subset of S (cf. Figure 4.1).

New transitions added hereNo new transitions here

Invariant of fault-intolerant program Invariant of fault-tolerant program

Figure 4.1: The relation between the invariant of a fault-intolerant program p and a fault-
tolerant program p′.

Likewise, to show that p′ is correct in the absence of faults, we need to show that

the computations of p′ that start in states in S ′ are in spec. We only have knowledge

about computations of p that start in a state in S (cf. Figure 4.1). Hence, we must

not introduce new transitions in the absence of faults. Thus, we define the problem

of synthesizing failsafe fault-tolerance as follows:

The Problem of Synthesizing Failsafe Fault-Tolerance

Given p, S, spec and f such that p satisfies spec from S

Identify p′ and S ′ such that

S ′ ⊆ S,

p′|S ′ ⊆ p|S ′, and

p′ is failsafe fault-tolerant to spec from S ′.

This problem statement is taken from [1]. In [1], a generalized definition that

applies to other types of fault-tolerance is presented. However, we use this restrictive

definition as it suffices in this chapter. Also, to show that the problem of synthesizing

failsafe fault-tolerance is NP-complete, we state the corresponding decision problem:

for a given fault-intolerant program p, its invariant S, the specification spec, and

faults f , does there exist a failsafe fault-tolerant program p′ and the invariant S ′ that

satisfy the three conditions of the synthesis problem?
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Notation. Given a fault-intolerant program p, specification spec, invariant S and

faults f , we say that program p′ and predicate S ′ solve the synthesis problem for a

given input iff p′ and S ′ satisfy the three conditions of the synthesis problem. We say

p′ (respectively, S ′) solves the synthesis problem iff there exists S ′ (respectively, p′)

such that p′, S ′ solve the synthesis problem.

4.2 NP-Completeness Proof

In this section, we prove that the problem of synthesizing failsafe fault-tolerant dis-

tributed programs from their fault-intolerant version is NP-complete. Towards this

end, we reduce the 3-SAT problem to the problem of synthesizing failsafe fault-

tolerance. In Subsection 4.2.1, we present the mapping of the given 3-SAT formula

into an instance of the synthesis problem. Afterwards, in Subsection 4.2.2, we show

that the 3-SAT formula is satisfiable iff a failsafe fault-tolerant program can be syn-

thesized from this instance of the synthesis problem. Before presenting the mapping,

we state the 3-SAT problem:

The 3-SAT problem.

Given is a set of propositional variables, b1, b2, ..., bn, and a Boolean formula c =

c1 ∧ c2 ∧ ... ∧ cM , where each cj is a disjunction of exactly three literals.

Does there exist an assignment of truth values to b1, b2, ..., bn such that c is satisfiable?

4.2.1 Mapping 3-SAT to an Instance of the Synthesis Prob-

lem

In this subsection, we map the given 3-SAT formula into an instance of the synthesis

problem. The instance of the synthesis problem includes the fault-intolerant program,

its specification, its invariant, and a class of faults. Corresponding to each proposi-

tional variable and each disjunction in the 3-SAT formula, we specify the states and

the set of transitions of the fault-intolerant program. Then, we identify the fault
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transitions of this instance. Subsequently, we identify the safety specification and the

invariant of the fault-intolerant program and determine the value of each program

variable in every state.

The states of the fault-intolerant program. Corresponding to each proposi-

tional variable bi, we introduce the following states (see Figure 4.2): xi, x
′
i, ai, yi, y

′
i, zi,

and z′i.

For each disjunction, cj = bm∨¬bk∨bl (cf. Figure 4.3), we introduce the following

states (k 6= m): c′jm, d′
jm, cjk, djk, c

′
jl, and d′

jl.

The transitions of the fault-intolerant program. In the fault-intolerant

program, corresponding to each propositional variable bi, we introduce the following

transitions (cf. Figure 4.2): (ai−1, xi), (xi, ai), (y
′
i, z

′
i), (ai−1, x

′
i), (x

′
i, ai), and (yi, zi).
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Figure 4.2: The transitions corresponding to the propositional variables in the 3-SAT
formula.

Also, we introduce a transition from an to a0 in the fault-intolerant program. Cor-

responding to each cj = bm ∨¬bk ∨ bl, we introduce the following program transitions

(cf. Figure 4.3): (c′jm, d′
jm), (cjk, djk), and (c′jl, d

′
jl).

Fault transitions. We introduce the following fault transitions: From state xi, the

fault-intolerant program can reach yi by the execution of faults. From state x′
i the

faults can perturb the program to state y′
i. Thus, for each propositional variable bi,

we introduce the following fault transitions: (xi, yi), and (x′
i, y

′
i). In addition, for each
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Figure 4.3: The structure of the fault-intolerant program for a propositional variable bi

and a disjunction cj = bm ∨ ¬bk ∨ bl.

disjunction cj = (bm ∨ ¬bk ∨ bl), we introduce a fault transition that perturbs the

program from state ai, 0 ≤ i < n, to c′jm. We also introduce the fault transition that

perturbs the program from d′
jm to cjk, and the transition that perturbs the program

from djk to c′jl. Thus, the fault transitions for cj are as follows: (ai, c
′
jm), (d′

jm, cjk),

and (djk, c
′
jl). (Note that the fault transition can perturb the program from state ai

only to the first state introduced for cj; i.e., c′jm.)

The invariant of the fault-intolerant program. The invariant of the fault-

intolerant program consists of the following set of states: {x1, · · · , xn}∪{x′
1, · · · , x′

n}∪

{a0, · · · , an−1}.

Safety specification of the fault-intolerant program. For each propositional

variable bi, the following two transitions violate the safety specification: (yi, zi), and
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(y′
i, z

′
i). Observe that in state xi (respectively, x′

i) safety may be violated if the

fault perturbs the program to yi (respectively, y′
i) and then the program executes

the transition (yi, zi) (respectively, (y′
i, z

′
i)) (cf. Figure 4.3). For each disjunction

cj = bm ∨ ¬bk ∨ bl, only the last program transition (c′jl, d
′
jl) added for cj violates

the safety of specification. Thus, if all three program transitions corresponding to

cj are included then safety may be violated by the execution of program and fault

transitions (cf. Figure 4.3).

Variables. Now, we specify the variables used in the fault-intolerant program and

their respective domains. These variables are assigned in such a way that allows us

to group transitions appropriately. The fault-intolerant program has 4 variables: e,

f, g, and h. The domains of these variables are respectively as follows: {0, · · · , n},

{−1, 0, 1}, {0, · · · , n}, and {0, · · · , M + n + 1}.

Value assignments. The value assignments are as follows (cf. Figure 4.4):State/Variable name e f g hai i 0 i 0xi i 1 i� 1 0x0i i �1 i� 1 0y0i i 1 i� 1 1yi i �1 i� 1 2z0i i 0 i 1zi i 0 i 2 State/Variable name e f g hc0ji i �1 i� 1 j + i+ 1d0ji i 0 i j + i+ 1cji i 1 i� 1 j + i+ 1dji i 0 i j + i+ 1
Figure 4.4: The value assignment to variables.

Processes and read/write restrictions. The fault-intolerant program consists of

five processes, P1, P2, P3, P4, and P5. The read/write restrictions on these processes

are as follows:

• Processes P1 and P2 can read and write variables f and g. They can only read

variable e and they cannot read or write h.

• Processes P3 and P4 can read and write variables e and f. They can only read

variable g and they cannot read or write h.

• Process P5 can read all program variables and it can only write e and g.
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Remark. We could have used one process for transitions of P1 and P2 (respectively,

P3 and P4) however, we have separated them in two processes in order to simplify the

presentation.

Grouping of Transitions. Based on the above read/write restrictions, we identify

the transitions that are grouped together. We illustrate the grouping of the program

transitions and the values assigned to the program variables in Figure 4.3.

Observation 4.1 Based on the inability of P3 and P4 to write g, the transitions

(xi, ai), (x′
i, ai), (yi, zi) and (y′

i, z
′
i) can only be executed by P1 or P2.

Observation 4.2 Based on the inability of P1 and P2 to write e, the transitions

(ai−1, xi) and (ai−1, x
′
i) can only be executed by P3 or P4.

Observation 4.3 Based on the inability of P1 to read h, the transitions (xi, ai) and

(y′
i, z

′
i) are grouped in P1. Moreover, this group also includes the transition (cji, dji)

for each cj that includes ¬bi.

Observation 4.4 Based on the inability of P2 to read h, the transitions (x′
i, ai) and

(yi, zi) are grouped in P2. Moreover, this group also includes the transition (c′ji, d
′
ji)

for each cj that includes bi.

Observation 4.5 (ai−1, xi) is grouped in P3.

Observation 4.6: (ai−1, x
′
i) is grouped in P4.

Observation 4.7: Since process P5 cannot write f , it cannot execute the following

transitions: (ai−1, xi), (ai−1, x
′
i), (xi, ai), (x

′
i, ai), (yi, zi), and (y′

i, z
′
i), for 1 ≤ i ≤ n.

Process P5 can only execute transition (an, a0).

For i, 1 ≤ i ≤ n, the set of transitions for each process is the union of the

transitions mentioned above.

4.2.2 Reduction from 3-SAT

In this subsection, we show that 3-SAT has a satisfying truth value assignment if

and only if there exists a failsafe fault-tolerant program derived from the instance
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introduced in Section 4.2.1. Towards this end, we prove the following lemmas:

Lemma 4.8 If the given 3-SAT formula is satisfiable then there exists a failsafe

fault-tolerant program that solves the instance of the addition problem identified in

Section 4.2.1.

Proof. Since the 3-SAT formula is satisfiable, there exists an assignment of truth

values to the propositional variables bi, 1 ≤ i ≤ n, such that each cj, 1 ≤ j ≤ M ,

is true. Now, we identify a fault-tolerant program, p′, that is obtained by adding

failsafe fault-tolerance to the fault-intolerant program, p, identified earlier in this

section. The invariant of p′ is:

S ′ = {a0, .., an−1} ∪ {xi | propositional variable bi is true in 3-SAT } ∪

{x′
i | propositional variable bi is false in 3-SAT }

The transitions of the fault-tolerant program p′ are obtained as follows:

• For each propositional variable bi, 1 ≤ i ≤ n, if bi is true, we include the

transition (ai−1, xi) that is grouped in process P3. We also include the transition

(xi, ai). Based on Observation 4.3, as we include (xi, ai), we have to include

(y′
i, z

′
i). Also, based on Observation 4.3, for each disjunction cj that includes

¬bi, we have to include the transition (cji, dji).

• For each propositional variable bi, 1 ≤ i ≤ n, if bi is false, we include the

transition (ai−1, x
′
i) that is grouped in process P4. We also include the transition

(x′
i, ai). Based on Observation 4.4, as we include (x′

i, ai), we have to include

(yi, zi). Also, for each disjunction cj that includes bi, we have to include the

transition (c′ji, d
′
ji).

• We include the transition (an, a0) to ensure that p′ has infinite computations in

its invariant.

Now, we show that p′ does not violate safety even if faults occur. Note that we

introduced safety-violating transitions for each propositional variable and for each

disjunct. We show that none of these can be executed by p′.
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• Safety-violating transitions related to propositional variable bi . If the value

of propositional variable bi is true then the safety-violating transition (y′
i, z

′
i) is

included in p′. However, in this case, we have removed the state x′
i from the

invariant of p′ and, hence, p′ cannot reach state y′
i. It follows that p′ cannot exe-

cute the transition (y′
i, z

′
i). By the same argument, p′ cannot execute transition

(yi, zi) when bi is false.

• Safety-violating transitions related to disjunction cj. Since the 3-SAT formula

is satisfiable, every disjunction in the formula is true. Let cj = bm ∨ ¬bk ∨

bl. Without loss of generality, let bm be true in cj. Therefore, the transition

(c′jm, d′
jm) is not included in p′. It follows that p′ cannot reach the state c′jl and,

hence, it cannot violate safety by executing the transition (c′jl, d
′
jl).

Since S ′ ⊆ S, p′ |S ′ ⊆ p |S ′, p′ does not deadlock in the absence of faults, and p′

does not violate safety in the presence of faults, p′ and S ′ solve the synthesis problem.

Lemma 4.9 If there exists a failsafe fault-tolerant program that solves the instance

of the addition problem identified in Section 4.2.1 then the given 3-SAT formula is

satisfiable.

Proof. Suppose that there exists a failsafe fault-tolerant program p′ derived from

the fault-intolerant program, p, identified in Section 4.2.1. Since the invariant of p′, S ′,

is not empty and S ′ ⊆ S, S ′ must have at least one state in S. Since the computations

of the fault-tolerant program in S ′ should not deadlock, for 0 ≤ i ≤ n − 1, every

ai must be included in S ′. For the same reason, since P5 cannot execute from ai−1

(cf. Observation 4.7), one of the transitions (ai−1, xi) or (ai−1, x
′
i) should be in p′

(1 ≤ i ≤ n). If p′ includes (ai−1, xi) then we will set bi = true in the 3-SAT formula.

If p′ contains the transition (ai−1, x
′
i) then we will set bi = false. Hence, each

propositional variable will be assigned a truth value. Now, we show that it is not

the case that bi is assigned true and false simultaneously, and that each disjunction
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is true.

• Each propositional variable gets a unique truth assignment. We prove this by

contradiction. Suppose that there exists a propositional variable bi, which is

assigned both true and false; i.e., both (ai−1, xi) and (ai−1, x
′
i) are included in

p′. Based on the Observations 4.1 and 4.3, the transitions (ai−1, xi), (xi, ai) and

(y′
i, z

′
i) must be included in p′. Likewise, based on the Observations 4.2 and 4.4,

the transitions (ai−1, x
′
i), (x

′
i, ai) and (yi, zi) must also be included in p′. Hence,

in the presence of faults, p′ may reach yi and violate safety by executing the

transition (yi, zi). This is a contradiction since we assumed that p′ is failsafe

fault-tolerant.

• Each disjunction is true. Suppose that there exists a cj = bm ∨ ¬bk ∨ bl,

which is not true. Therefore, bm = false, bk = true and bl = false. Based on

the grouping discussed earlier, the transitions (c′jm, d′
jm), (cjk, djk), (c

′
jl, d

′
jl) are

included in p′. Thus, in the presence of faults, p′ can reach c′jl and violate safety

specification by executing the transition (c′jl, d
′
jl). Since this is a contradiction,

it follows that each disjunct in the 3-SAT formula is true.

Theorem 4.10 The problem of synthesizing failsafe fault-tolerant distributed pro-

grams from their fault-intolerant version is NP-complete.

Proof. The NP-hardness of synthesizing failsafe fault-tolerant distributed programs

follows from Lemmas 4.8 and 4.9. Also, using Theorem 2.1 presented in Section 2.8,

it follows that the problem of synthesizing failsafe fault-tolerant distributed programs

is NP-complete.

4.3 Monotonic Specifications and Programs

Since the synthesis of failsafe fault-tolerance is NP-complete, as discussed earlier, we

focus on this question: What restrictions can be imposed on specifications, programs
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and faults in order to guarantee that the addition of failsafe fault-tolerance can be

done in polynomial time?

As seen in Section 4.2, one of the reasons behind the complexity involved in the

synthesis of failsafe fault-tolerance is the inability of the fault-intolerant program to

execute certain transitions even when no faults have occurred. More specifically, if a

group of transitions includes a transition within the invariant of the fault-intolerant

program and a transition that violates safety, then it is difficult to determine whether

that group should be included in the failsafe fault-tolerant program.

To identify the restrictions that need to be imposed on the specification, the

fault-intolerant program and the faults, we begin with the following question: Given

a program p with invariant S, under what conditions, can we design a failsafe fault-

tolerant program, say p′, that includes all transitions in p|S? If all transitions in p|S

are included then it follows that p′ will not deadlock in any state in S. Moreover, p′

will satisfy its specification from S; if a computation of p′ begins in S then it is also

a computation of p. Now, we need to ensure that safety will not be violated due to

fault transitions and the transitions that are grouped with those in p|S.

In this section, we identify the situations under which the addition of failsafe

fault-tolerance can be achieved in polynomial time. Towards this end, in Subsection

4.3.1, we define a class of specifications, monotonic specifications, and a class of

programs, monotonic programs, for which failsafe fault-tolerance can be synthesized

in polynomial time. The intent of these definitions is to identify conditions under

which a process can make safe estimates of variables that it cannot read. Also,

we introduce the concept of fault-safe specifications. Subsequently, in Subsection

4.3.2, we show the role of monotonicity restrictions imposed on specifications and

programs in adding failsafe fault-tolerance. When these restrictions are satisfied, we

show the transitions in p|S and the transitions grouped with them form the failsafe

fault-tolerant program.
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4.3.1 Sufficiency of Monotonicity

In this section, we identify sufficient conditions for polynomial-time synthesis of fail-

safe fault-tolerant distributed programs from their fault-intolerant version. In a

program with a set of processes {P0, · · · , Pn}, consider the case where process Pj

(0 ≤ j ≤ n) cannot read the value of a Boolean variable x. The definition of (posi-

tive) monotonicity captures the case where Pj can safely assume that x is false, and

even if x were true when Pj executes, the corresponding transition would not violate

safety. Thus, we define monotonic specification as follows:

Definition. A specification spec is positive monotonic on a state predicate Y with

respect to a Boolean variable x iff the following condition is satisfied:

∀s0, s1, s
′
0, s

′
1 :: x(s0) = false ∧ x(s1) = false ∧ x(s′0) = true ∧ x(s′1) = true

∧ the value of all other variables in s0 and s′0 are the same

∧ the value of all other variables in s1 and s′1 are the same

∧ (s0, s1) does not violate spec ∧ s0 ∈ Y ∧ s1 ∈ Y

⇒

(s′0, s
′
1) does not violate spec

Likewise, we define monotonicity for programs by considering transitions within

a state predicate, and define monotonic programs as follows:

Definition. A program p is positive monotonic on a state predicate Y with respect

to a Boolean variable x iff the following condition is satisfied.

∀s0, s1, s
′
0, s

′
1 :: x(s0) = false ∧ x(s1) = false ∧ x(s′0) = true ∧ x(s′1) = true

∧ the value of all other variables in s0 and s′0 are the same

∧ the value of all other variables in s1 and s′1 are the same

∧ (s0, s1) ∈ p|Y

⇒

(s′0, s
′
1) ∈ p|Y
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Negative monotonicity and monotonicity with respect to non-Boolean vari-

ables. We define negative monotonicity by swapping the words false and true in

the above definitions. Also, although we defined monotonicity with respect to Boolean

variables, it can be extended to deal with non-Boolean variables. One approach is

to replace x = false with x = 0 and x = true with x 6= 0 in the above definition. In

this case, the estimate for x is 0. We use this definition later in the section where we

discuss the necessity of the monotonic programs and specifications.

Definition. Given a specification spec and faults f , we say that spec is f -safe iff the

following condition is satisfied.

∀s0, s1 :: ((s0, s1) ∈ f ∧ (s0, s1) violates spec) ⇒ (∀s−1 :: (s−1, s0) violates spec)

The above definition states that if a fault transition (s0, s1) violates spec then all

transitions that reach state s0 violate spec. The goal of this definition is to capture the

requirement that if a computation prefix violates safety and the last transition in that

prefix is a fault transition then the safety is violated even before the fault transition

is executed. Another interpretation of this definition is that if a computation prefix

maintains safety then the execution of a fault action cannot violate safety. Yet another

interpretation is that the first transition that causes safety to be violated is a program

transition.

We would like to note that for most problems, the specifications being considered

are fault-safe. To understand this, consider the problem of mutual exclusion where

a fault may cause a process to fail. In this problem, failure of a process does not

violate the safety; safety is violated if some process subsequently accesses its critical

section even though some other process is already in the critical section. Thus, the

first transition that causes safety to be violated is a program transition. We also note

that the specifications for Byzantine agreement, consensus and commit are f -safe for

the corresponding faults (cf. Section 4.4). In fact, given a specification spec and a

class of fault f , we can obtain an equivalent specification specf that prohibits the

execution of the following transitions.
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{(s0, s1) : (s0, s1) violates spec ∨ (∃s2 :: (s1, s2)∈f ∧ (s1, s2) violates spec) }

We leave it to the reader to verify that ‘p is failsafe f -tolerant to spec from S’ iff

‘p is failsafe f -tolerant to specf from S’. With this observation, in the rest of this

section, we assume that the given specification, spec, is f -safe. If this is not the case,

Theorem 4.11 and Corollary 4.12 can be used if one replaces spec with specf .

Using monotonicity of specifications/programs for polynomial time syn-

thesis. We use the monotonicity of specifications and programs to show that even

if the fault-intolerant program executes after faults occur, safety will not be violated.

More specifically, we prove the following theorem:

Theorem 4.11 Given is a fault-intolerant program p, its invariant S, faults f and

an f -safe specification spec,

If

∀Pj , x : Pj is a process in p, x is a Boolean variable such that Pj cannot read x :

spec is positive monotonic on S with respect to x

∧ The program consisting of the transitions of Pj is negative monotonic on S

with respect to x

Then

Failsafe fault-tolerant program that solves the synthesis problem can be obtained

in polynomial time.

Proof. Let (s0, s1) be a transition of process Pj and let (s0, s1) be in p|S. Let

x be a Boolean variable that Pj cannot read. Since we are considering programs

where a process cannot blindly write a variable, it follows that x(s0) equals x(s1).

Now, we consider the transition (s′0, s
′
1) where s′0 (respectively, s′1) is identical to s0

(respectively, s1) except for the value of x. We show that (s′0, s
′
1) does not violate

spec by considering the value of x(s0).

• x(s0)=false. Since (s0, s1) ∈ p|S, it follows that (s0, s1) does not violate safety.

Hence, from the positive monotonicity of spec on S, it follows that (s′0, s
′
1) does

not violate spec.
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• x(s0) = true. From the negative monotonicity of p on S, (s′0, s
′
1) is in p|S.

Hence, (s′0, s
′
1) does not violate spec.

The above discussion leads to a special case of solving the synthesis problem where

the transitions in p|S and the transitions grouped with them can be included in the

failsafe fault-tolerant program. Since p′|S equals p|S and p satisfies spec from S, it

follows that p′ satisfies spec from S. Moreover, as shown above, no transition in p′

violates spec. And, since spec is f -safe, execution of fault actions alone cannot violate

spec. It follows that p′ is failsafe f -tolerant to spec from S.

We generalize Theorem 4.11 as follows:

Corollary 4.12 Given is a fault-intolerant program p, its invariant S, faults f and

an f -safe specification spec,

If

∀Pj , x : Pj is a process in p, x is a Boolean variable such that Pj cannot read x :

(spec is positive monotonic on S with respect to x

∧The program consisting of the transitions of Pj is negative monotonic on S

with respect to x)

∨

(spec is negative monotonic on S with respect to x

∧The program consisting of the transitions of Pj is positive monotonic on S

with respect to x)

Then

Failsafe fault-tolerant program that solves the synthesis problem can be obtained

in polynomial time.

4.3.2 Role of Monotonicity in Complexity of Synthesis

In Section 4.3.1, we showed that if the given specification is positive (respectively,

negative) monotonic and the fault-intolerant program is negative (respectively, posi-

tive) monotonic then the problem of adding failsafe fault-tolerance can be solved in
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polynomial time. In this section, we consider the question: What can we say about

the complexity of adding failsafe fault-tolerance if only one of these conditions is sat-

isfied? Specifically, in Observations 4.13 and 4.14, we show that if only one of these

conditions is satisfied then the problem remains NP-complete.

Observation 4.13 Given is a fault-intolerant program p, its invariant S, faults f and

an f -safe specification spec. If the monotonicity restrictions (from Corollary 4.12) are

satisfied for p and no restrictions are imposed on the monotonicity of spec then the

problem of adding failsafe fault-tolerance to p remains NP-complete.

Proof. This proof follows from the fact that the program obtained by mapping the

3-SAT problem in Section 4.2 is negative monotonic with respect to h. Moreover, all

processes can read all variables except h (i.e., e, f , and g). It follows that the proof

in Section 4.2 maps an instance of the 3-SAT problem to an instance of the problem

of adding failsafe fault-tolerance where the monotonicity restrictions from Corollary

4.12 holds for the program and no assumption is made about the monotonicity of the

specification. Therefore, based on Lemmas 4.8 and 4.9, the proof follows.

Furthermore, the specification obtained by mapping the 3-SAT problem in Section

4.2 is negative monotonic with respect to h. Hence, similar to Observation 4.13, we

have

Observation 4.14 Given is a fault-intolerant program p, its invariant S, faults f and

an f -safe specification spec. If the monotonicity restrictions (from Corollary 4.12) are

satisfied for spec and no restrictions are imposed on the monotonicity of p on S then

the problem of adding failsafe fault-tolerance to p remains NP-complete.

Proof. The proof is similar to the proof of Observation 4.13.

Based on the above discussion, it follows that monotonicity of both programs and

specifications is necessary in the proof of Theorem 4.11. If only one of these properties

is satisfied then the problem of adding failsafe fault-tolerance remains NP-complete.

Comment on the monotonicity property. The monotonicity requirements are simple
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and if a program and its specification meet the monotonicity requirements then the

synthesis of failsafe fault-tolerance will be simple as well. Nevertheless, the signifi-

cance of such sufficient conditions lies in developing heuristics by which we transform

specifications (respectively, programs) to monotonic specifications (respectively, pro-

grams) so that polynomial-time addition of failsafe fault-tolerance becomes possible.

While the issue of designing such heuristics is outside the scope of this paper, we note

that we have developed such heuristics in Chapter 9 and [29], where we automatically

transform specifications (respectively, programs) to monotonic specifications (respec-

tively, programs) for the sake of polynomial-time addition of failsafe fault-tolerance

to distributed programs.

4.4 Examples of Monotonic Specifications

In this section, we present three problems, Byzantine agreement, consensus and com-

mit, for which the specifications and fault-intolerant programs are monotonic. In

the case of Byzantine agreement, we first identify the variables and their respective

domains. Then, we provide the fault-intolerant program and its invariant. Subse-

quently, we present the specification and faults. Finally, we show the monotonicity

with respect to appropriate variables. Since the arguments for consensus and com-

mit are similar to those in the Byzantine agreement problem, we simply sketch the

arguments for those two problems.

4.4.1 Byzantine Agreement

For simplicity, we consider the canonical version where there are 4 distributed pro-

cesses g, j, k, and l such that g is the general and j, k, l are the non-generals. (An

identical explanation is applicable if we consider arbitrary number of non-generals.)

In the agreement program, the general sends its decision to non-generals and subse-

quently non-generals output their decisions. Hence each process has a variable d to

represent its decision, a boolean variable b to represent if that process is Byzantine,
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and a variable f to represent that process has finalized (output) its decision. The

program variables and their domains are as follows:

d.g : {0, 1}

d.j, d.k, d.l : {0, 1,⊥} // ⊥ denotes uninitialized decision

b.g, b.j, b.k, b.l : {true, false} // b.j = true iff j is Byzantine

f.j, f.k, f.l : {0, 1} // f.j =1 iff j has finalized its decision

The fault-intolerant Byzantine Agreement, IB. Each non-Byzantine process

j is represented by the following actions:

d.j = ⊥ ∧ f.j = 0 −→ d.j := d.g

d.j 6= ⊥ ∧ f.j = 0 −→ f.j := 1

Invariant of IB. The invariant of IB, SIB, is as follows:

SIB = (∀p :: ¬b.p ∧ (d.p = ⊥ ∨ d.p = d.g) ∧ (f.p ⇒ d.p 6= ⊥))

Safety specification of Byzantine agreement. The safety specification requires

that Validity and Agreement be satisfied. Validity requires that if the general is not

Byzantine and a non-Byzantine non-general has finalized its decision then the decision

of that non-general process is the same as that of the general. Agreement requires that

if two non-Byzantine non-generals have finalized their decisions then their decisions

are identical. Hence, the program should not reach a state in Ssf , where

Ssf = (∃p, q :: ¬b.p ∧ ¬b.q ∧ d.p 6= ⊥ ∧ d.q 6= ⊥ ∧ d.p 6= d.q ∧ f.p ∧ f.q)

∨ (∃p :: ¬b.g ∧ ¬b.p ∧ d.p 6= ⊥ ∧ d.p 6= d.g ∧ f.p)

In addition, when a non-Byzantine process finalizes, it is not allowed to change it

decision. Therefore, the set of transitions that should not be executed is as follows:

tsf = {(s0, s1) : s1 ∈ Ssf} ∪ {(s0, s1) : ¬b.j(s0) ∧ ¬b.j(s1) ∧ f.j(s0) = 1

∧ (d.j(s0) 6= d.j(s1) ∨ f.j(s0) 6= fj(s1))}
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Faults. The Byzantine faults, fB, can affect one process at most and a Byzantine

process can change its decision arbitrarily. Hence, the Byzantine faults are shown by

the following actions:

¬b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l −→ b.j := true

b.j −→ d.j, f.j := 0|1, 0|1

The read/write restrictions: Each non-general non-Byzantine process j is allowed

to read rj = {b.j, d.j, f.j, d.k, d.l, d.g} and it can only write wj = {d.j, f.j}. Hence,

in this case wj ⊆ rj. And, the variables that j is not allowed to read are nrj =

{b.g, b.k, b.l, f.k, f.l}.

Monotonicity of the specification and the program. We make the following

observations.

Observation 4.15 The specification of Byzantine agreement is positive monotonic

with respect to b.k (respectively, b.j and b.l)

Proof. Consider a transition (s0, s1) of some non-general process, say j, where

validity and agreement are not violated when k is not Byzantine. Let (s′0, s
′
1) be the

corresponding transition where k is Byzantine. Since validity and agreement impose

no restrictions on what a Byzantine process may do, it follows that (s′0, s
′
1) does not

violate validity and agreement.

Observation 4.16 The specification of Byzantine agreement is negative monotonic

with respect to f.k (respectively, f.j and f.l)

Proof. Consider a transition (s0, s1) of some non-general process, say j, where

validity and agreement are not violated when f.k is 1, i.e., k has finalized its deci-

sion. Let (s′0, s
′
1) be the corresponding transition where f.k is 0. Since validity and

agreement impose no restrictions on processes that have not finalized their decision,

it follows that (s′0, s
′
1) does not violate validity and agreement.

Observation 4.17 The program IBj, consisting of the transitions of j, with invariant

SIB is negative monotonic with respect to b.k (respectively, b.j and b.l)
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Proof. Follows from the fact that IB|SIB contains no transitions when b.k is true.

Observation 4.18 The program IBj, consisting of the transitions of j, with invariant

SIB is positive monotonic with respect to f.k (respectively, f.j and f.l)

Proof. We leave it to the reader to observe this by considering all transitions in j.

Observation 4.19 The specification of Byzantine agreement is fB-safe.

Proof. Follows from the fact that a fault only affects the variables of a Byzan-

tine process and, hence, cannot violate safety; safety may only be violated if a non-

Byzantine process changes its state based on the variables of the Byzantine process.

Now, using Observations 4.15-4.19 and Corollary 4.12, we have

Theorem 4.20 Failsafe fault-tolerant Byzantine agreement program can be obtained

in polynomial time.

To obtain the failsafe fault-tolerant program, we calculate the transitions of the

fault-tolerant program inside the invariant SIB. The groups of transitions associated

with them form the failsafe fault-tolerant program, FSB. Thus, the actions of a

non-general process Pj in the fault-tolerant program are as follows:

FSB1 : d.j = ⊥ ∧ f.j = 0 −→ d.j := d.g

FSB2 : (d.j = 0) ∧ ((d.k 6= 1) ∧ (d.l 6= 1)) ∧ f.j = 0 −→ f.j := 1

FSB3 : (d.j = 1) ∧ ((d.k 6= 0) ∧ (d.l 6= 0)) ∧ f.j = 0 −→ f.j := 1

The first action remains unchanged, and the second and the third actions deter-

mine when a process can safely finalize its decision so that the validity and agreement

are preserved. Note that if the general is Byzantine and casts two different decisions

to two non-general processes then the non-general processes may never finalize their
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decisions. Nonetheless, the program FSB will never violate the safety of specification

(i.e., FSB is failsafe fault-tolerant).

4.4.2 Consensus and Commit

We now discuss the problems of distributed consensus and atomic commit to show

that their specifications and fault-intolerant programs satisfy the monotonicity re-

quirements. Since the arguments involved in these problems are similar to those in

Byzantine agreement, we simply outline the reasoning behind the monotonicity.

Consensus. In distributed consensus, each process begins with a vote. Initially,

the votes of processes may be different. It is required that all non-faulty processes

agree on the same value (agreement) and that if the vote of every process is v then

the agreed value be the same as v (validity). A fault can cause a process to crash

(undetectably). Upon failure, the vote (and the decision) of the failed process is

reset to ⊥ so that other processes cannot distinguish between the failed process and

a process that has yet to vote.

In this problem, we introduce a variable, up.j for every process j; j can read its

own up value but not the up value of other processes. It is straightforward to see that

the specification of consensus is negative monotonic with respect to up. Likewise, in

the absence of faults, all up values are true and, hence, in the absence of faults, a

fault-intolerant program has no transitions that execute when an up value is false.

It follows that a fault-intolerant program for consensus is positive monotonic with

respect to up.

Commit. In the commit problem, the agreement requirement is the same as

that in consensus. However, validity requires that if the vote of any process is 0 then

the agreed value must be 0. And, if all processes vote 1 and no failures occur then it is

required that the agreed value must be 1. Again, the fault considered for this problem

is the crash fault and, hence, we introduce the variable up for every process to denote
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whether the process is up or not. The argument that monotonicity requirements are

met in the commit problem is the same as that in the consensus problem.

4.5 Summary

In this chapter, we focused on the problem of adding failsafe fault-tolerance to an

existing fault-intolerant distributed program. A failsafe fault-tolerant program satis-

fies its specification (including safety and liveness) when no faults occur. However,

if faults occur, it satisfies at least the safety specification. We showed, in Section

4.2, that the problem of adding failsafe fault-tolerance to distributed programs is

NP-complete. Towards this end, we reduced the 3-SAT problem to the problem of

adding failsafe fault-tolerance.

In a broader perspective, we are interested in identifying the problems for which

the synthesis of fault-tolerant programs can be designed efficiently (in polynomial

time) and the problems for which exponential complexity is inevitable (unless P =

NP ). By identifying such a boundary, we can determine the problems that can reap

the benefits of automation and the problems for which heuristics need to be developed

in order to benefit from automation. This chapter helps to make this boundary more

precise than [1] in three ways. For one, the proof in [1] is for masking fault-tolerance

where both safety and liveness need to be satisfied. By contrast, the NP-completeness

in this chapter applies to the class of programs where only safety is satisfied. Also,

the proof in [1] relies on the ability of a process to blindly write some variables. By

contrast, the proof in this chapter does not rely on such an assumption.

The third –and the most important– step in identifying the boundary is addressed

in Section 4.3 where we identified a class of specifications and a class of programs

for which failsafe fault-tolerance can be added in polynomial time. Essentially, this

class captures the intuition that to obtain a failsafe fault-tolerant program, we can
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let the fault-intolerant program execute in the presence of faults and ensure that a

program transition is executed only if its execution will be safe even if faults have

occurred. Towards this end, we imposed two restrictions: positive monotonicity of the

specification and negative monotonicity of the fault-intolerant program. We showed

that these restrictions are sufficient for polynomial synthesis of failsafe fault-tolerant

distributed programs.

To show the sufficiency, in Section 4.3, we showed how a failsafe fault-tolerant

program can be designed if one begins with a positive monotonic specification and

a negative monotonic program. Also, we proved that if only the input program

(respectively, specification) is monotonic and there exist no assumption about the

monotonicity of the specification (respectively, program) then the synthesis of failsafe

fault-tolerance remains NP-complete.
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Chapter 5

Fault-Tolerance Enhancement

In this chapter, we concentrate on automated techniques to enhance the fault-

tolerance level of a program from nonmasking to masking. Given the complexity

of adding fault-tolerance to a fault-intolerant distributed program, in this chapter,

we address the following question. Is it possible to reduce the complexity of adding

masking fault-tolerance if we begin with a program that provides additional guarantees

about its behavior in the presence of faults? Towards this end, we formally define

the problem of enhancing the fault-tolerance of nonmasking programs to masking.

Then, we present a sound and complete algorithm for the enhancement of fault-

tolerance in high atomicity model. We also present a sound algorithm for enhancing

the fault-tolerance of nonmasking distributed programs. We illustrate our algorithms

by enhancing the fault-tolerance of the triple modular redundancy (TMR) program

and the Byzantine agreement program.

This chapter is organized as follows: In Section 5.1, we state the problem of

enhancing the fault-tolerance from nonmasking to masking. In Section 5.2, we present

our solution for the high atomicity model. In Section 5.3, we present our solution for

distributed programs. Finally, we summarize this chapter in Section 5.6.
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5.1 Problem Statement

In this section, we formally define the problem of enhancing fault-tolerance from non-

masking to masking. The input to the enhancement problem includes the (transitions

of) nonmasking program, p, its invariant, S, faults, f , and specification, spec. Given

p, S, and f , we can calculate an f -span, say T , of p by starting at a state in S and

identifying states reached in the computations of p[]f . Hence, we include fault-span T

in the inputs of the enhancement problem. The output of the enhancement problem

is a masking fault-tolerant program, p′, its invariant, S ′, and its f -span, T ′.

Since p is nonmasking fault-tolerant, in the presence of faults, p may temporarily

violate safety. More specifically, faults may perturb p to a state in T−S. After faults

stop occurring, p will eventually reach a state in S. However, p may violate spec

while it is in T−S. By contrast, a masking fault-tolerant program p′ must satisfy its

safety specification even during recovery from T−S to S.

The goal of the enhancement problem is to separate the tasks involved in adding

recovery transitions and the tasks involved in ensuring safety. The enhancement

problem deals only with adding safety to a nonmasking fault-tolerant program. With

this intuition, we define the enhancement problem in such a way that only safety

may be added while adding masking fault-tolerance. In other words, we require that

during the enhancement, no new transitions are added to deal with functionality

or to deal with recovery. Towards this end, we identify the relation between state

predicates T and T ′, and the relation between the transitions of p and p′.

If p′[]f reaches a state that is outside T then new recovery transitions must be

added while obtaining the masking fault-tolerant program. Hence, we require that

the fault-span of the masking fault-tolerant program, T ′, be a subset of T . Likewise,

if p′ does not introduce new recovery transitions then all the transitions included in

p′|T ′ must be a subset of p|T ′. Thus, the enhancement problem is as follows:
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The Enhancement Problem

Given p, S, spec, f , and T such that p satisfies spec from S and

T is an f -span used to show that p is nonmasking fault-tolerant for spec from S

Identify p′ and T ′ such that

T ′ ⊆ T ,

p′|T ′ ⊆ p|T ′, and

p′ is masking f -tolerant from T ′ for spec.

Comments on the Problem Statement

1. While the invariant, S, of the nonmasking fault-tolerant program is an input to

the enhancement problem, it is not used explicitly in the requirements of the

enhancement problem. The knowledge of S permits us to identify the transitions

of p that provide functionality and the transitions of p that provide recovery. We

find that such classification of transitions is useful in solving the enhancement

problem. Hence, we include S in the problem statement.

2. If S ′ is an invariant of p′, S ′ ⊆ T ′, every computation of p′ that starts from

a state in T ′ maintains safety, and every computation of p′ that starts from a

state in T ′ eventually reaches a state in S ′ then every computation of p′ that

starts in a state in T ′ also satisfies its specification. In other words, in this

situation, T ′ is also an invariant of p′. (This result has been previously shown

in [18]; we repeat the proof in Section 5.2.) Hence, we do not explicitly identify

an invariant of p′. Predicates T ′ and T ′ ∩ S can be used as the invariants of p′.

3. The above problem statement assumes that no new states/variables are added

while enhancing fault-tolerance. This assumption can be removed by allowing

systematic addition of new variables [1]. Another approach is to pretend that a

process can read certain private variables of other processes. Then, we design

a masking program that uses such private variables. The transitions of such
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a masking program will require the detection of predicates involving the pri-

vate variables of other processes; one can use refinement techniques to detect

these non-local predicates appropriately. These refinement techniques, in turn,

will determine the new variables that need to be added to detect these non-

local predicates. Several such refinement techniques have been discussed in the

literature (e.g., [30, 18]).

5.2 Enhancement in High Atomicity Model

In this section, we present our algorithm for solving the enhancement problem in high

atomicity model. Thus, given a high atomicity nonmasking fault-tolerant program p,

our algorithm derives masking fault-tolerant program p′ that ensures that safety is

added while the recovery provided by p is preserved. The goal of the enhancement

problem is to add safety while preserving recovery. Hence, we obtain a solution for

the enhancement problem by tailoring the algorithm Add failsafe (see Section 2.7.1);

Add failsafe deals with the addition of safety to a fault-intolerant program in the

presence of faults.

In our algorithm (cf. Figure 5.1), first, we compute the set of states, ms, from

where fault actions alone violate safety. Clearly, we must ensure that the program

never reaches a state in ms. Hence, in addition to the transitions that violate safety,

we cannot use the transitions that reach a state in ms. We use mt to denote the

transitions that cannot be used while adding safety. Using ms and mt, we compute the

fault-span of p′, T ′, by calling function HighAtomicityConstructInvariant (HACI).

The first guess for T ′ is T −ms. However, due to the removal of transitions in mt,

it may not be possible to provide recovery from some states in T −ms. Hence, we

remove such states while obtaining T ′. If the removal of such states causes other

states to become deadlocked, we remove those states as well. Moreover, if (s0, s1)

is a fault transition such that s1 was removed from T ′ then we remove s0 to ensure

61



that T ′ is closed in f . We continue the removal of states from T ′ until a fixed point

is established. After computing T ′, we compute the transitions of p′ by removing all

the transitions of p−mt that start in a state in T ′ but reach a state outside T ′. Thus,

our algorithm is as follows:

High Atomicity Enhancement(p, f : set of transitions, T : state predicate,
spec: specification)

{ ms := {s0 : ∃s1, s2, ...sn :
(∀j : 0≤j <n : (sj , s(j+1)) ∈ f) ∧ (s(n−1), sn) violates spec };

mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) };
T ′ := HACI(T − ms, p−mt, f);
if (T ′={}) declare no masking f-tolerant program p′ exists;
else p′ := (p − mt) − {(s0, s1) : s0∈T ′ ∧ s1 6∈ T ′}

}

HACI(T : state predicate, p, f : set of transitions)
{ while (∃s0 : s0∈T : (∀s1 : s1∈T : (s0, s1) 6∈p)∨ (∃s1 : s1 6∈ T : (s0, s1)∈f))

T := T − {s0} }

Figure 5.1: The enhancement of fault-tolerance in high atomicity.

Before showing that the algorithm High Atomicity Enhancement is sound and com-

plete and its complexity is polynomial in the state space of the nonmasking fault-

tolerant program, we present a set of observations about our high atomicity algo-

rithm. We use these observations to prove two lemmas about the computations of

the synthesized masking fault-tolerant program in the presence of faults. Then, we

use these lemmas to prove the soundness and completeness of our algorithm in the

high atomicity model. To prove the soundness of our algorithm, we have to show that

p′ and T ′ satisfy the conditions of the enhancement problem. To prove the complete-

ness, we show that if there exists any masking fault-tolerant program that enhances

the fault-tolerance of the given nonmasking program then our algorithm will succeed

in finding one.

We use the following notation in the rest of this section: Given a fault-intolerant

program p, specification spec, invariant S, faults f , and fault-span T , we say that
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program p′ and predicate T ′ solve the enhancement problem for the given input

iff p′ and T ′ satisfy the three conditions of the enhancement problem. We say p′

(respectively, T ′) solves the enhancement problem iff there exists T ′ (respectively, p′)

such that p′, T ′ solve the enhancement problem.

In the high atomicity algorithm, based on the the construction of T ′, we have:

Observation 5.1 T ′ ∩ ms = {}.

By the construction of T ′, T ′ is obtained by removing zero or more states in T .

Thus, we have:

Observation 5.2 T ′ ⊆ T .

The transitions of p′ are a subset of the transitions of p. Thus, we have:

Observation 5.3 (p′|T ′) ⊆ (p|T ′).

From the definition of HACI, T ′ is closed in p′ and f . Thus, we have:

Observation 5.4 T ′ is closed in p′[]f .

If faults perturb p to a state in T , eventually p will return to a state in S. Also,

by definition, S ⊆ T and by Observation 5.2, T ′ ⊆ T . Now, if T ′ ∩ S = {}, and a

computation c of p′[]f reaches a state in T ′ − S then p′ will never have a chance to

return to a state of S. By Observation 5.3, c is also a computation of p. Thus, if

T ′ ∩ S = {} then there exists a computation of p[]f that starts in a state in T and

never reaches a state in S. Since this is a contradiction, we have

Observation 5.5 T ′ ∩ S 6= {} .

Definition. For the rest of the section, we let S ′ to be equal to T ′ ∩ S.

Now, we use these observations to present two lemmas that are used in the sound-

ness proof of the algorithm. First, in Lemma 5.6, we show that in the presence of

faults safety specification is not violated. Then, in Lemma 5.7, we show that if faults

perturb p′ to a state in T ′ then every computation of p′ starting at T ′ will reach a

state in S ′.

Lemma 5.6 p′[]f maintains spec from T ′.
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Proof. By construction, T ′ is closed in p′[]f . Let c be a computation of p′[]f

that starts from a state in T ′. If c violates the safety of spec, there exists a prefix,

say 〈s0, s1, ..., sn〉, that violates the safety of spec. Wlog, let 〈s0, s1, ..., sn〉 be the

smallest such prefix. It follows that (s(n−1), sn) violates the safety of spec and, hence,

(s(n−1), sn) ∈ mt. By construction, p′ does not contain any transition in mt. Thus,

(s(n−1), sn) is a transition of f . If (s(n−1), sn) is a transition of f then s(n−1) ∈ms and

(s(n−2), s(n−1)) ∈ mt and, hence, (s(n−2), s(n−1)) is a transition of f . By induction, if

〈s0, s1, ..., sn〉 violates the safety of spec, s0 ∈ms, which is not possible since s0 ∈T ′

(cf. Observation 5.1). Thus, p′[]f maintains spec from T ′.

Lemma 5.7 Every computation of p′ that starts from a state in T ′ contains a state

in S ′.

Proof. Consider a computation of p′, say c, that starts from a state s0 in T ′. Since

c is also a computation of p, it eventually reaches in a state, say sn, in S (0 ≤ n). By

the definition of S ′ and the closure of T ′ in p′, it follows that sn is in S ′.

Theorem 5.8 T ′ is an invariant of p′ for spec.

Proof. Let c be a computation of p′ that starts from a state in T ′. By Lemma

5.6, c maintains spec and by Lemma 5.7, c contains a state sn, where sn ∈ S ′. Thus,

c is of the form 〈s0, s1, ..., sn, sn+1, ...〉, where the prefix 〈s0, s1, ..., sn〉 maintains spec

and 〈sn, sn+1, ...〉 is in spec. By definition of maintains, there exists a suffix, say

β, such that 〈s0, s1, ..., sn〉β is in spec. Now, from fusion closure, it follows that

〈s0, s1, ..., sn, sn+1, ...〉 is also in spec. Thus, every computation of p′ that starts in a

state in T ′ is in spec. Also, T ′ is closed in p′ (cf. Observation 5.4). It follows that T ′

is an invariant of p′ for spec.

Theorem 5.9 (Soundness) The algorithm High Atomicity Enhancement is

sound.

Proof. To prove that our algorithm is sound, we have to show that the conditions

of the enhancement problem are satisfied.
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1. T ′ ⊆ T . (cf. Observation 5.2).

2. p′|T ′ ⊆ p|T ′. (cf. Observation 5.3).

3. p′ is masking f -tolerant to spec from T ′. By letting the fault-span to be T ′

itself, the proof follows.

Theorem 5.10 (Completeness) The algorithm High Atomicity Enhancement

is complete.

Proof. Let program p′′ and predicate T ′′ solve the enhancement problem. Clearly,

T ′′ ∩ ms={}; if s0∈(T ′′ ∩ ms) then the execution of faults alone from s0 can violate

the safety of spec. It follows that T ′′ ⊆ (T −ms). Moreover, p′′|T ′′ cannot include

any transitions in mt; if p′′|T ′′ contains a transition in mt then the execution of this

transition followed by zero or more fault transitions can violate the safety of spec.

Thus, p′′|T ′′ ⊆ (p−mt). Finally, every computation of p′′ that starts from a state in

T ′′ must be an infinite computation, if it were to be in spec, and T ′′ must be closed

in f . It follows that there exists a nonempty subset of T (namely, T ′′) such that all

computations of p−mt within that subset are infinite.

Our algorithm declares that no solution for the enhancement problem exists only

when there is no nonempty subset of T−ms such that all the computations of p−mt

within that subset are infinite, and that set is closed. It follows that the algorithm is

complete.

Theorem 5.11 The algorithm High Atomicity Enhancement is sound and com-

plete and the complexity of High Atomicity Enhancement is polynomial in the state

space of the nonmasking fault-tolerant program.

Proof. The soundness and completeness proof follows from Theorems 5.9 and

5.10. Regarding complexity, note that the computation of ms as well as computation

of HACI are both polynomial in the state space of the input program.
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5.2.1 Example: Triple Modular Redundancy

As an illustration of our high atomicity algorithm, we show how the masking

triple modular redundancy (TMR) program can be designed by enhancing the fault-

tolerance level of the corresponding nonmasking program.

First, we present the nonmasking version of TMR program, the specification of

TMR, and the fault actions for TMR. Then, we show how our high atomicity algo-

rithm is used to enhance the level of fault-tolerance to masking.

Nonmasking TMR program. Nonmasking version of TMR program consists of

three processes j, k, and l that share an output variable out. Each process j has an

input variable in.j. The values of these input variables are obtained from a common

sensor. The domain of each input variable is {0, 1} and the domain of out is {0, 1,⊥}

(⊥ means no value has been assigned to out). For each process j, if the value of out

is not yet assigned, j copies (using guarded command N1) its input in.j to out. And,

if out is assigned a wrong value, i.e., the value other than the majority value, and the

value of in.j is not corrupted then process j corrects (by guarded command N2) out

by copying in.j to out. Both nonmasking and masking programs for TMR include

a self-loop for states in which out has been assigned a correct value. However, for

brevity, in this section, we keep such self-loops implicit. Thus, the actions of each

process j in the nonmasking version of TMR are as follows (in this section, ⊕ denotes

modulo 3 addition):

N1 : (out =⊥) −→ out := in.j

N2 : (out 6=⊥) ∧ (out 6= in.j) ∧ ((in.j = in.(j ⊕ 1)) ∨ (in.j = in.(j ⊕ 2)))

−→ out := in.j

Faults. Faults may perturb one of the inputs when all of them are equal. Thus,

the fault action that affects j is represented by the following action:

F : (∀p :: in.j = in.p) −→ in.j := 0 | 1

Invariant. The following state predicate is an invariant of TMR.
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STMR = (out =⊥ ∧ (∀p, q :: in.p = in.q)) ∨ (∃p, q : p 6= q : out = in.p = in.q)

Safety specification. The safety specification of TMR requires the program not to

reach states in which there exist two processes whose input values are equal but these

inputs are not equal to out (where out 6=⊥). The safety specification also stipulates

that variable out cannot change if it is different from ⊥. Thus, safety specification

requires that following transitions are not included in a program computation.

sfTMR = sf1 ∪ sf2, where

sf1 = {(s0, s1) | (∃p, q : (p 6= q) : (in.p(s1) = in.q(s1)) ∧

(in.q(s1) 6= out) ∧ (out(s1) 6=⊥))}, and

sf2 = {(s0, s1) | (out(s0) 6=⊥) ∧ (out(s0) 6= out(s1))}

Fault-span. If all the inputs are equal then the value of out is either ⊥ or equal

to those inputs. Thus, fault-span of the nonmasking version of TMR is T , where

TTMR = (∀p, q :: in.p = in.q) ⇒ ((out =⊥) ∨ (∀p :: out = in.p))

Remark. The TMR program consists of three variables whose domain is {0, 1}

and one variable whose domain is {0, 1,⊥}. Enumerating the states associated with

these variables, the state space of TMR program includes 24 states. Of these, 10

states are in the invariant, 12 additional states are in the fault-span, and two states

are outside the fault-span.

The program consisting of actions N1 and N2 is nonmasking fault-tolerant in that

if it begins in a state where STMR is true then it satisfies its specification. However, if

the faults perturb it to a state in TTMR−STMR then it eventually recovers to a state

where STMR is true. Nonetheless, until such a state is reached, safety specification

may be violated.

Enhancing the tolerance of TMR. We trace the execution of our high atomicity

algorithm for nonmasking TMR program.
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1. Compute ms. ms includes all the states from where one or more fault

transitions violate safety. In case of TMR, fault transitions do not violate safety

if they execute in a state in TTMR . Faults only change the value of one of the

inputs and then safety may be violated if the corresponding process executes

guarded command N1. Thus, TTMR ∩ ms = {}.

2. Compute mt. From the definition of ms, mt= sfTMR.

3. Construct T ′
TMR and p′. After removing transitions in mt, states where out

differs from ⊥ and out differs from the majority of the inputs are deadlocked.

Hence, we need to remove those states while obtaining T ′
TMR. After removal of

those states, there are no other deadlock states. Hence, our algorithm will let

T ′
TMR to be the state predicate:

T ′
TMR = TTMR − {s : (∃p, q : (p 6= q) : (in.p(s) = in.q(s)) ∧ (out(s) 6=⊥) ∧

(out(s) 6= in.p(s)))}

Moreover, to obtain the transitions of masking version of TMR, we consider the

transitions of p that preserve the closure property of T ′
TMR. Thus, the masking

version of TMR consists of the following guarded command:

M1 : (out =⊥) ∧ ((in.j = in.(j ⊕ 1)) ∨ (in.j = in.(j ⊕ 2))) −→ out := in.j

The predicate T ′
TMR computed by our algorithm is both an invariant and a fault-

span for the above program; every computation of the above program satisfies

the specification if it begins in a state in T ′
TMR. Moreover, T ′

TMR is closed in

both the program and fault transitions.

Remark. Note that transitions included in N2 are removed from the above

masking fault-tolerant program as those transitions violate sf2. However, if

safety consisted of only sf1 then the fault-tolerant program would include the
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transitions included in N2. While a masking fault-tolerant program can be

obtained without using the transitions in N2, their inclusion follows from the

heuristic in [1] that the output program should be maximal. In [1], Kulkarni

and Arora have argued that if the output of a synthesis algorithm is to be used

as an input, say to add fault-tolerance for a new fault, it is desirable that the

intermediate program be maximal.

5.3 Enhancement for Distributed Programs

In this section, we present an algorithm to enhance the fault-tolerance level of a

distributed nonmasking fault-tolerant program to masking. First, we discuss the

issues involved in the enhancement problem for distributed programs. Then, we

present our algorithm. As a case study, we apply our algorithm to the Byzantine

agreement problem.

In high atomicity model, the main issue in enhancing the fault-tolerance level of a

nonmasking fault-tolerant program p was to ensure that p does not execute a safety

violating transition (s0, s1). In order to achieve this goal, we can either (i) ensure that

p will never reach s0, or (ii) remove (s0, s1). For the high atomicity model, we chose the

latter option as it was strictly a better choice. However, for distributed programs, we

cannot simply remove a safety violating transition (s0, s1) as (s0, s1) could be grouped

with some other transitions (due to read restrictions). Thus, removal of (s0, s1) will

also remove other transitions that are potentially useful recovery transitions. In other

words, for distributed programs, the second choice is not necessarily the best option.

Since an appropriate choice from the above two options cannot be identified easily for

distributed programs, the synthesis of distributed programs becomes more difficult.

We develop our low atomicity algorithm (cf. Figure 5.3) by tailoring the high

atomicity algorithm to deal with the grouping of transitions. More specifically, given

a nonmasking fault-tolerant program p, we first start by calculating a high atomicity
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fault-span, T ′
high , which is closed in p[]f . Since the low atomicity model is more

restrictive than the high atomicity model and T ′
high is the largest fault-span for a high

atomicity program, we use T ′
high as the domain of the states that may be included

in the fault-span of our low atomicity program. In other words, if a transition, say

(s0, s1) violates the safety specification and s0 6∈ T ′
high then we include the group

associated with (s0, s1) and ensure that state s0 is never reached.

Then, we call function LowAtomicityConstructInvariant (LACI) to calculate a

low atomicity invariant S ′
low for p′ (cf. Figure 5.2). In the body of the algorithm in

Figure 5.3, to calculate S ′
low, we first call function LACI with T ′

high∩S as its first

argument. Inside LACI, we ignore the fault transitions during the call to HACI; we

consider the effect of fault transitions subsequently. In this call to HACI, we also

ignore the grouping of transitions. These requirements are checked on the value of

S ′
high returned by HACI. Specifically, if there exists a group containing transitions

(s0, s1) and (s′0, s
′
1) such that s0, s

′
0, s

′
1 ∈ S ′

high and s1 6∈ S ′
high, we remove s0 from S ′

high

and recalculate the invariant. If no such group exists, LACI returns S ′
high. Thus, the

function LACI is as follows:

LACI(S : state predicate, p: transitions, g0, · · · , gm: groups of transitions )
{ S ′

high = HACI(S, p, ∅);
if (∃gi, s0, s1, s

′
0, s

′
1 : (s0, s1), (s

′
0, s

′
1) ∈ gi : (s0, s

′
0, s

′
1 ∈ S ′

high ∧ s1 /∈ S ′
high) )

then return LACI(S ′
high − {s0}, p, g0, · · · , gm);

else return S ′
high;

}

Figure 5.2: Constructing an invariant in the low atomicity model.

In Figure 5.3, the value returned by LACI, S ′
init, is used as an estimate of the in-

variant of the masking fault-tolerant distributed program. To compute T ′, we identify

the effect of the fault transitions and the program transitions from states in S ′
init. We

use the variable S ′
low to keep track of states reached in the execution of the program

and fault transitions from S ′
init. Our first estimate for S ′

low is the same as S ′
init. Now,
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we compute S2 as the set of states reached in one step (of program or fault). Regard-

ing fault transitions, if (s0, s1) is a fault transition, s0 ∈ S ′
low and s1 ∈ (T ′

high−S ′
low)

then we add state s1 to the set S2. Regarding program transitions, we only consider a

group if the following three conditions are satisfied: (1) at least one of the transitions

in it begins and ends in S ′
low, (2) if a transition in that group begins in a state in

T ′
high then it terminates in a state in T ′

high and it does not violate safety, and (3) if

a transition in that group begins in a state in S ′
init then it terminates in a state in

S ′
init. If such a group has another transition (s′0, s

′
1) such that s′0 ∈ S ′

low and s′1 6∈ S ′
low

then we include state s′1 in the set S2. (Note that in the first iteration, S ′
init equals

S ′
low. Hence, expansion by program transitions need not be considered. However, this

expansion may be necessary in subsequent iterations.) Thus, S2 identifies states from

where recovery must be preserved.

Low Atomicity Enhancement(p : transitions, g0, · · · , gm: groups of transitions,
f : faults, T , S : state predicate, spec : specification)

// p = g0 ∪ g1 ∪ ... ∪ gm

{ Calculate ms and mt as in High Atomicity Enhancement
T ′

high = HACI(T − ms, p − mt, f);
S′

init = S′
low = LACI(S∩T ′

high, p − mt, g0, · · · , gm);
repeat {

S2 = {s1 : s1 ∈ (T ′
high−S′

low) : (∃s0 : s0 ∈ S′
low : (s0, s1) ∈ f ∨

(∃gi : (s0, s1) ∈ gi : (((gi|S′
low) ∩ (p−mt)) 6= φ) ∧

(∀s2, s3 : (s2, s3) ∈ gi ∧ s2 ∈ T ′
high : s3 ∈ T ′

high ∧ (s2, s3) 6∈ mt) ∧
(∀s2, s3 : (s2, s3) ∈ gi ∧ s2 ∈ S′

init : s3 ∈ S′
init)) )}

S3 = {s0 : s0 ∈ (T ′
high−S′

low) : (∃s1, gi : (s0, s1) ∈ gi ∧ s1 ∈ S′
low :

(∀s2, s3 : (s2, s3) ∈ gi ∧ s2 ∈ T ′
high : s3 ∈ T ′

high ∧ (s2, s3) 6∈ mt) ∧
(∀s2, s3 : (s2, s3) ∈ gi ∧ s2 ∈ S′

init : s3 ∈ S′
init))}

S′
low = S′

low ∪ S3;
} until (S3 = ∅);
if (S2 6= ∅) then declare fault-tolerance cannot be enhanced; exit().
T ′ = S′

low;
p′ = {gi : (∀s0, s1 : (s0, s1) ∈ gi : (s0 ∈ T ′ ⇒ (s1 ∈ T ′ ∧ (s0, s1) ∈ (p − mt))) ∧

(s0 ∈ S′
init ⇒ s1 ∈ S′

init))};
return p′, T ′;

}

Figure 5.3: The enhancement of fault-tolerance for distributed programs.
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We then calculate the set of states from where recovery can be added, in one step.

Specifically, if there is a transition (s0, s1) such that s0 6∈ S ′
low and s1 ∈ S ′

low then we

include s0 in set S3. We require that T ′
high and S ′

init are closed in the group being

considered for recovery and that safety is not violated by any transition (that starts in

a state in T ′
high) in that group (see the constraints of S3 in Figure 5.3). Subsequently,

we add S3 to S ′
low. The goal of this step is to ensure that infinite computations are

possible from all states in S ′
low. This result is true about the initial value (S ′

init) of

S ′
low. Moreover, this property continues to be true since there is an outgoing transition

from every state in S3.

We continue this calculation until no new states can be added to S ′
low. At this

point, if S2 is nonempty, i.e., there are states from where recovery needs to be added

but no new recovery transitions can be added, we declare failure. Otherwise, we

identify the transitions of fault-tolerant program p′ by considering transitions of p−mt

that start in a state in S ′
low. Hence, our low atomicity algorithm is as shown in Figure

5.3.

Before we discuss the soundness and the complexity of

Low Atomicity Enhancement, we first make some observations about our low

atomicity algorithm. Then, we present three lemmas that are used in the soundness

proof. Similar to the proof in the high atomicity algorithm, we have

Observation 5.12 T ′ ⊆ (T − ms), T ′ ∩ ms = {}, and (p | T ′) ∩ mt = ∅.

Observation 5.13 S ′
init ⊆ S, and S ′

low ∩ ms = {}.

Observation 5.14 T ′
high ⊆ T .

Observation 5.15 (p′ | T ′) ⊆ (p | T ′).

In the main loop of the algorithm, S2 and S3 are subsets of T ′
high. Hence, the

relations S ′
low ⊆ T ′

high remains true throughout our algorithm. The value of T ′ equals
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the value of S ′
low when the loop terminates. Hence, we have

Observation 5.16 T ′ ⊆ T ′
high ⊆ T .

Lemma 5.17 p′[]f maintains spec from T ′.

Proof. By construction, when T ′ is assigned the value S ′
low, the value of S2 is the

empty set. Thus, starting from a state in T ′, p′[]f cannot perturb p′ to a state that is

outside T ′. It follows that T ′ is closed in p′[]f . Now, let c be a computation of p′[]f

that starts from a state in T ′. Just as in the proof of Lemma 5.6, it can be shown

that each prefix of c maintains spec. Thus, p′[]f maintains spec from T ′.

Lemma 5.18 p′ satisfies spec from S ′
init .

Proof. Since S ′
init is a subset of S, S ′

init ⊆ S ′
low ⊆ T ′, (p′|T ′) ⊆ (p|T ′) and

every computation of p′ that starts from a state in S ′
init is also a computation of p.

Hence, every computation of p′ that starts from a state in S ′
init is in spec. Also, by

construction of p′, S ′ is closed in p′. Thus, p′ satisfies spec from S ′
init .

Lemma 5.19 Every computation of p′ that starts in a state in T ′ is infinite.

Proof. By construction of LACI, this property is true about S ′
init. Now, a state,

say s, is added to S3 only if there is a recovery transition, say t, from that state.

Moreover, when transitions of p′ are computed, the value of S2 is the empty set.

Hence, the group(s) of transitions containing t is included in p′. Thus, from every

state in T ′, there is an outgoing transition in p′. It follows that every computation of

p′ that starts in a state in T ′ is infinite.

Theorem 5.20 T ′ is (also) an invariant of p′ for spec.

Proof. From Observation 5.15, every computation of p′ that starts in a state

in T ′ is a computation of p. Thus, every computation of p′ that starts from a

state in T ′ reaches a state in S. Thus, a computation of p from T is of the form

〈s0, s1, ..., sn, sn+1, ...〉 where sn ∈ S. By Lemma 5.17, 〈s0, s1, ..., sn〉 maintains spec

and 〈sn, sn+1, ...〉 is in spec. Now, similar to the proof in Theorem 5.8, we can show
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that c is in spec. Thus, T ′ is also an invariant of p′ for spec.

Theorem 5.21 The algorithm Low Atomicity Enhancement is sound and its com-

plexity is polynomial in the state space of the nonmasking fault-tolerant program.

Regarding soundness, we have to show that the conditions of the enhancement

problem are satisfied.

1. T ′ ⊆ T . (cf. Observation 5.16).

2. p′|T ′ ⊆ p|T ′. (cf. Observation 5.15).

3. p′ is masking f -tolerant to spec from T ′. By letting the fault-span to be T ′

itself, the proof follows.

Regarding, complexity, we observe that the number of iterations for the main loop

are at most |T ′
high| and each statement in the low atomicity algorithm requires only

polynomial time.

Modifications/Improvements for Low Atomicity Enhancement. There are

several improvements that can be made for the above algorithm. We discuss these

improvements and issues related to completeness below.

1. In the low atomicity enhancement algorithm, if the value of S2 is the empty set

then we can break out of the loop before computing S3. Subsequently, we can

use value of S ′
low at that time to compute p′ and T ′. However, we continue in the

loop to determine whether recovery can be added from new states. This allows

the possibility that a larger fault-span is computed and additional transitions

are included in the masking fault-tolerant program. As mentioned in [1], if

the output of a synthesis algorithm is used as an input to another synthesis

algorithm, say to add fault-tolerance for a new fault, then it is desirable that

the fault-span and the transitions of the intermediate program be maximal. For

this reason, we have allowed the algorithm to expand the fault-span and to add

new transitions.
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2. In the low atomicity enhancement algorithm, in the calculation of S3, we calcu-

late states from where recovery is possible. One heuristic is to focus on states in

S2 first as recovery must be added from states in S2. If recovery from states in

S2 is not possible then other states in T ′
high−S ′

low should be considered. However,

considering states in S2 alone may be insufficient as it may not be possible to

add recovery from those states in one step; adding recovery from other states

can help in recovering from states in S2.

3. Our algorithm is incomplete in that it may be possible to enhance the fault-

tolerance of a given nonmasking program although our algorithm fails to find

it. One of the causes for incompleteness is in our calculation of LACI; when

LACI needs to remove states/transitions to deal with grouping of transitions,

the choice is non-deterministic. Since this choice may be inappropriate, the

algorithm is incomplete. As we showed in Chapter 4 that adding failsafe

fault-tolerance to distributed programs is NP-complete, it is expected that the

complexity of a deterministic sound and complete algorithm for enhancing the

fault-tolerance of a distributed nonmasking program will be exponential unless

P =NP .

5.3.1 Example: Byzantine Agreement

We show how our algorithm for the low atomicity model is used to enhance the

fault-tolerance level of a nonmasking Byzantine agreement program to masking. First,

we present the nonmasking program, its invariant, its safety specification, faults, the

fault-span for the given faults, and read/write restrictions. Finally, we show how our

algorithm is used to obtain the masking program (in [26]) for Byzantine agreement.

Variables for Byzantine agreement. The nonmasking program consists of

three non-general processes j, k, l and a general g. Each non-general process has

three variables d, f , and b. Variable d.j represents the decision of a non-general
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process j, f.j denotes whether j has finalized its decision, and b.j denotes whether j

is Byzantine or not. Process g also has a variable d.g and b.g. Thus, the variables in

the Byzantine agreement program are as follows:

• d.g : {0, 1}

• d.j, d.k, d.l : {0, 1,⊥}

• b.g, b.j, b.k, b.l : {true, false}

• f.j, f.k, f.l : {0, 1}

Transitions of the nonmasking program. If process j has not copied a value

from the general, action NB1 copies the decision of the general. If j has copied a

decision and as a result d.j is different from ⊥ then j can finalize its decision by action

NB2. If process j reaches a state, where its decision is not equal to the majority of

decisions and all the non-general processes have decided then j corrects its decision

by actions NB3 or NB4. Thus, the actions of each process j in the nonmasking

program are as follows:

NB1 : d.j = ⊥ ∧ f.j = 0 −→ d.j := d.g

NB2 : d.j 6= ⊥ ∧ f.j = 0 −→ f.j := 1

NB3 : (d.j = 1) ∧ (d.k = 0) ∧ (d.l = 0) −→ d.j := 0

NB4 : (d.j = 0) ∧ (d.k = 1) ∧ (d.l = 1) −→ d.j := 1

Safety specification. The safety specification requires that if g is Byzantine,

all the non-general processes should finalize with the same decision (agreement). If

g is not Byzantine, then the decision of every non-general non-Byzantine process

that has finalized should be the same as d.g (validity). Thus, safety is violated if

the program reaches a state in Ssf , where (in this section, unless otherwise specified,

quantifications are on non-general processes)

Ssf = (∃p, q :: ¬b.p ∧ ¬b.q ∧ d.p 6= ⊥ ∧ d.q 6= ⊥ ∧ d.p 6= d.q ∧ f.p ∧ f.q)

∨ (∃p :: ¬b.g ∧ ¬b.p ∧ d.p 6= ⊥ ∧ d.p 6= d.g ∧ f.p)
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Also, a transition violates safety if it changes the decision of a process after it has

finalized. Thus, the set of transitions that violate safety is equal to tsf , where

tsf = {(s0, s1) : s1 ∈ Ssf} ∪ {(s0, s1) : ∃p :: ¬b.p(s0) ∧ ¬b.p(s1) ∧ f.p(s0) = 1

∧ (d.p(s0) 6= d.p(s1) ∨ f.p(s0) 6= f.p(s1))}

Invariant. The invariant of nonmasking Byzantine agreement is the state predicate

SNB = SNB1 ∨ SNB2 , where

SNB1 = ¬b.g ∧ (¬b.j ∨ ¬b.k) ∧ (¬b.k ∨ ¬b.l) ∧ (¬b.l ∨ ¬b.j)

∧ (∀p :: ¬b.p ⇒ (d.p = ⊥ ∨ d.p = d.g)) ∧ (∀p :: (¬b.p ∧ f.p) ⇒ (d.p 6= ⊥))

SNB2 = b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l ∧ (d.j = d.k = d.l ∧ d.j 6= ⊥)

Read/Write restrictions. Each non-general process j is allowed to read {b.j,

d.j, f.j, d.k, d.l, d.g}. Thus, j can read the d values of other processes and all its

variables. The set of variables that j can write is {d.j, f.j}.

Faults for Byzantine agreement. A fault transition can cause a process to

become Byzantine if no process is initially Byzantine. A fault can also change the d

and f values of a Byzantine process. Thus, the fault transitions that affect j are as

follows (We include similar fault-transitions for k, l, and g):

F1 : ¬b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l −→ b.j := true

F2 : b.j −→ d.j, f.j := 0|1, 0|1

Fault-Span. Starting from a state in SNB1 , if no process is Byzantine then a fault

transition can cause one process to become Byzantine. Then, faults can change d

and f values of the Byzantine process. Now, if the faults do not cause g to become

Byzantine then the set of states reached from SNB1 is the same as SNB1 . However, if

the faults cause g to become Byzantine then d and f values of non-general processes

may be arbitrary. Nonetheless, the b values of non-general processes will remain false.

Thus, the set of states reached from SNB1 is (SNB1 ∪ (b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l)).
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Starting from SNB2 , no process can become Byzantine. Hence, the d values of

non-general processes will remain unchanged. It follows that the set of states reached

from SNB2 is SNB2 . Finally, since SNB2 is a subset of (b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l), the

set of states reached from SNB is TNB, where

TNB = SNB1 ∪ (b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l)

Application of our algorithm. First, we compute ms and mt that are needed by

our algorithm. Every fault transition originating at Ssf reaches Ssf because it only

affects the Byzantine process and the destination state will remain in Ssf . Since the

destination of these fault transitions is Ssf , they violate the safety. Thus, the set of

states from where faults alone violate safety is equal to Ssf , and as a result ms = Ssf .

Since tsf includes all the transitions that reach Ssf (which is equal to ms) or violate

safety, mt = tsf .

To calculate T ′
high, we use the HACI function of our high atomicity algorithm.

This function removes deadlock states and states from where the closure of T ′
high is

violated by fault transitions. Since we have removed ms states and no fault transition

can reach a state in ms from a state outside ms, there exists no state from where the

closure of T ′
high can be violated by fault transitions. Now, consider a state, say s0,

where d.j =0, d.k=0, d.l=1, b.l=false, and f.l=1. Clearly, s0 is a deadlock state as

no process can execute a safe transition from s0. Hence, such states must be removed

while obtaining T ′
high.

Now, consider a state, say s1, where d.j = ⊥, d.k = 0, d.l = 1, b.l = false, and

f.l=1. In state s1, only process j can execute a transition (by copying d.g) without

violating safety. However, if j copies the value of the general and d.g=0, the program

reaches a state that was removed earlier. Hence, such states must also be removed

while obtaining T ′
high. Continuing thus, we remove all states where a process in the

minority has finalized its decision. In other words, T ′
high is equal to TNB−X, where

X = {s : (∃p :: f.p(s) = 1 ∧ (∀q : p 6= q : d.p(s) 6= d.q(s)))}
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After this step, function LACI returns S ′
init = T ′

high ∩ SNB. Now, we trace two

iterations of the main loop in our algorithm in order to illustrate the way that our

algorithm works.

1. First iteration. To calculate S2, we search for states in S ′
init from where

we can directly reach a state in T ′
high−S ′

init by fault transitions or by program

transitions. From S ′
init, no program transition can reach a state that is outside

S ′
init. However, from a state s, where (¬(d.j(s)=d.k(s)=d.l(s))∨(∃p :: d.p(s)=

⊥)), a fault transition can cause the general to become Byzantine and then the

program is outside S ′
init. Hence, in the first iteration, S2 = {s : s ∈ (T ′

high−S ′
init) :

b.g(s) ∧ (¬(d.j(s)=d.k(s)=d.l(s)) ∨ (∃p :: d.p(s)=⊥)) ∧ (∀p : (d.p(s) 6= ⊥) ⇒

(d.p(s)=d.g(s)))}.

Now, we compute S3. Consider a state, say s0, where d.j = 0, d.k = 0, d.l =

1, b.l=false, and f.l=0. In s0, l can change d.l to 0 and reach a state in S ′
init.

Hence, such states are included in S3. Also, consider a state, say s1, where

d.j =⊥, d.k = 1, d.l = 1, and d.g = 1. In s1, process j can copy the value of d.g

and take the program to S ′
init. Therefore, in this iteration S3 = P1 ∪ P2, where

P1 = {s : s ∈ (T ′
high−S ′

init) : (∃p : (d.p(s) 6= ⊥) ∧ (f.p(s) = 0) :

(∀q : (q 6= p) : (d.q(s) 6= ⊥) ∧ d.p(s) 6= d.q(s)))}, and

P2 = {s : s ∈ (T ′
high−S ′

init) :

(∃p : d.p(s)=⊥ : (∀q : q 6= p : (d.q(s) 6= ⊥) ∧ (d.q(s)=d.g(s))))}

Then, we add S3 states to S ′
low.

Remark. In the case of Byzantine agreement, the only states from where

recovery to S ′
init can be achieved in a single step are the states of S3 in the first

iteration. Every other recovery path includes these states as its final step to

S ′
init.
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2. Second iteration. In the second iteration S ′
low = S ′

init ∪ S3 (S3 in the first

iteration.). To calculate S2 in the second iteration, we search for states in S ′
low

from where we can directly reach a state in T ′
high−S ′

low by fault transitions or

by program transitions.

To calculate S2 in the second iteration, we need to calculate the set of states

in T ′
high−S ′

low that are reachable by a fault transition from S ′
low. From the first

iteration, we already know the set of states reachable from S ′
init. Thus, we only

need to calculate the states of T ′
high−S ′

low that are reachable by a fault transition

from recently joined states (i.e., S3 = P1∪P2 of the first iteration) to S ′
low. Since

in P1 the general process is Byzantine and all non-generals have decided, P1 is

closed in fault transitions. However, in a state in P2, since g is Byzantine,

faults may change the value of d.g and take the program outside S ′
low. In these

states, the condition (∃p : d.p = ⊥ : (∀q : q 6= p : (d.q 6= ⊥) ∧ (d.q 6= d.g)))

holds. Therefore, in this iteration, the program can reach states of S2 by a fault

transition, where

S2 = {s : s ∈ (T ′
high−S ′

low) :

b.g(s) ∧ (∃p : d.p=⊥ : (∀q : q 6= p : (d.q 6= ⊥) ∧ (d.q 6= d.g)))}

To calculate S3, we find states from where recovery is possible to S ′
low. Thus,

we search for states from where we can reach the states of S3 calculated in the

first iteration. Hence, in this iteration, single-step recovery to S ′
low is possible

from S3, where

S3 = {s : s ∈ (T ′
high − S ′

low) : (∃p : (d.p(s)=⊥) : (∀q : q 6= p : d.q(s) 6= ⊥)) ∨

(∃p : (d.p(s) 6= ⊥) ∧ (d.p(s)=d.g(s)) : (∀q : q 6= p : d.q(s)=⊥))}
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Continuing thus, we get the masking fault-tolerant Byzantine agreement; this

program is the same as that in [26]. The actions of this program are as follows:

MB1 : d.j = ⊥ ∧ f.j = 0 −→ d.j := d.g

MB2 : d.j 6= ⊥ ∧ f.j = 0 ∧ ((d.j = d.k) ∨ (d.j = d.l))−→ f.j := 1

MB3 : (d.j = 1) ∧ (d.k = 0) ∧ (d.l = 0) ∧ (f.j = 0) −→ d.j := 0

MB4 : (d.j = 0) ∧ (d.k = 1) ∧ (d.l = 1) ∧ (f.j = 0) −→ d.j := 1

5.4 Using Monotonicity for the Enhancement of

Fault-Tolerance

In this section, we illustrate how we use monotonicity of programs and specifications

to enhance the fault-tolerance of nonmasking fault-tolerant distributed programs to

masking fault-tolerance in polynomial-time (in the state space of the nonmasking

program). Towards this end, in Subsection 5.4.1, we present a theorem that identifies

the sufficient conditions for enhancing the fault-tolerance of nonmasking programs in

polynomial time. Then, in Subsection 5.4.2, we present an example to illustrate the

application of the theorem presented in Section 5.4.1.

5.4.1 Monotonicity of Nonmasking Programs

In this section, our goal is to identify properties of programs and specifications where

enhancing the fault-tolerance of nonmasking fault-tolerant programs can be done

in polynomial time. Specifically, we present a theorem that identifies the sufficient

conditions for polynomial-time enhancement of the fault-tolerance of nonmasking

distributed programs to masking. As we have shown in Section 4.2, in general, adding

failsafe fault-tolerance to a distributed program is NP-complete. Thus, it is expected

that the enhancement problem is also NP-complete. Hence, we focus on the following

question:
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Given is a nonmasking program, p, its specification, spec, its invariant, S,

a class of faults f , and its fault-span, T :

Under what conditions can one derive a masking fault-tolerant program p′

from a nonmasking fault-tolerant program p in polynomial time?

To address the above question, we sketch a simple scenario where we can eas-

ily derive a masking fault-tolerant program from p. Specifically, we investigate the

case where we only remove groups of transitions of p that include safety-violating

transitions and the remaining groups of transitions construct the set of transitions

of the masking fault-tolerant program p′. However, removing a group of transitions

may result in creating states with no outgoing transitions (i.e., deadlock states) in

the fault-span T or the invariant S. In order to resolve deadlock states, we need

to add recovery transitions, and as a result, adding recovery transitions may create

non-progress cycles in (T −S). When we remove a non-progress cycle, we may create

more deadlock states. This way, removing a group of safety-violating transitions may

lead us to a cycle of complex actions of adding and removing (groups of) transitions.

To address the above problem, we require the set of transitions of p to be structured

in such a way that removing safety-violating transitions (and their associated group of

transitions) does not create deadlock states. Towards this end, we define potentially

safe nonmasking programs as follows:

Definition. A nonmasking program p with the invariant S and the specification

spec is potentially safe iff the following condition is satisfied.

∀s0, s1 :: ((s0, s1) /∈ p|S ∧ ((s0, s1) violates spec) )

⇒ ( ∃s2 :: ((s0, s2) ∈ p) ∧ (s0, s2) does not violate spec )

Moreover, we require that the removal of a safety-violating transition and its

associated group of transitions does not remove good transitions that are useful for

the purpose of recovery. Thus, if a transition violates the safety of spec then we require
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that no good transition exists in its associated group of transitions. To address this

issue (i.e., safety-violating transitions are not grouped with good transitions), we

use the monotonicity property to define independent programs and specifications as

follows.

Definition. A nonmasking program p is independent of a Boolean variable x on a

predicate Y iff p is both positive and negative monotonic on Y with respect to x.

Intuitively, the above definition captures that if there exists a transition (s0, s1) ∈

p|Y and (s0, s1) belongs to a group of transitions g that is created due to inability of

reading x then for all transitions (s′0, s
′
1) ∈ g we will satisfy (s′0, s

′
1) ∈ p|Y , regardless of

the value of the variable x in s′0 and s′1. Likewise, we define the notion of independence

for specifications as follows:

Definition. A specification spec is independent of a Boolean variable x on a

predicate Y iff spec is both positive and negative monotonic on Y with respect to x.

Based on the above definition, if a transition (s0, s1) belongs to a group of tran-

sitions g that is created due to inability of reading x, and (s0, s1) does not violate

safety then no transition (s′0, s
′
1) ∈ g will violate safety, regardless of the value of the

variable x in s′0 and s′1.

Now, using the above definitions, we present the following theorem.

Theorem 5.22 Given is a nonmasking fault-tolerant program p, its invariant S, its

fault-span T , faults f and f -safe specification spec,

If p is potentially safe, and

∀Pj , x : Pj is a process in p, x is a Boolean variable such that Pj cannot read x :

spec is independent of x on T

∧ The program consisting of the transitions of Pj is independent of x on S

Then

A masking fault-tolerant program p′ can be derived from p in polynomial time.

83



Proof. Let (s0, s1) be a transition of process Pj. We consider two case where

(s0, s1) ∈ (p|S) or (s0, s1) /∈ (p|S).

1. Let (s0, s1) ∈ (p|S) and x be a variable that Pj cannot read. Since we consider

programs where a process cannot blindly write a variable, it follows that x(s0)

equals x(s1). Now, we consider the transition (s′0, s
′
1) where s′0 (respectively,

s′1) is identical to s0 (respectively, s1) except for the value of x. Since p is

independent of x on S, for every value of x(s0) we will have (s′0, s
′
1) ∈ (p|S).

Thus, we include the group associated with (s0, s1) in the set of transitions of

p′.

2. Let (s0, s1) /∈ (p|S). Again, due to the inability of Pj to read x, we consider

the transition (s′0, s
′
1) where s′0 (respectively, s′1) is identical to s0 (respectively,

s1) except for the value of x. By the definition of spec independence, if (s0, s1)

violates spec then regardless of the value of x every transition (s′0, s
′
1) in the

group associated with (s0, s1) violates spec, and as a result, we exclude this

group of transitions in the set of transitions of p′.

p′ satisfies spec from S. Now, let p′ be the program that consists of the transitions

remained in p|T after excluding some groups of transitions. Since p′|S equals p|S and

p satisfies spec from S, it follows that p′ satisfies spec from S in the absence of f .

Every computation prefix of p′[]f that starts at T maintains spec. Since we

have removed the safety-violating transitions in p|T , when f perturbs p to T every

computation prefix of p′[]f maintains safety of specification.

Every computation of p′[]f that starts in T has a state in S. When we remove

a safety-violating transition (s0, s1) ∈ p|T , we actually remove all transitions (s′0, s
′
1),

where s′0 (respectively, s′1) is identical to s0 (respectively, s1) except for the value of

x. Note that since spec is independent of x, all transitions (s′0, s
′
1) that are grouped

with (s0, s1) violate the safety of spec if (s0, s1) violates the safety of spec. Now, since
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p is potentially safe, by definition, for every removed transition (s0, s1) (respectively,

(s′0, s
′
1)) there exist safe transitions (s0, s2) (respectively, (s′0, s

′
2)) that guarantee s0

(respectively, s′0) has at least one outgoing transition (i.e., s0 (respectively, s′0) is not

a deadlock state). Thus, if we remove the safety-violating transitions then we will

not create any deadlock state in T . It follows that the recovery from T −S to S,

provided by the nonmasking program p, is preserved. Also, we have shown that p′

satisfies spec from S and every computation prefix of p′[]f maintains spec. Therefore,

p′ is masking f -tolerant to spec from S.

5.4.2 Example: Distributed Counter

In this section, we present an example for enhancing the fault-tolerance of nonmasking

distributed programs to masking using the monotonicity property. Towards this end,

we first introduce the nonmasking program, its invariant, its safety specification, and

the faults that perturb the program. Then, we synthesize the masking fault-tolerant

program using Theorem 5.22.

Nonmasking program. The nonmasking program p represents an even counter.

The program p consists of two processes namely, P0 and P1, where P0 is responsible to

reset the least significant bit (denoted x0) whenever it is not equal to zero. And, P1 is

responsible to toggle the value of the most significant bit (denoted x1), continuously.

Process P0 can only read/write x0, P1 is able to read x0 and x1, and P1 can only write

x1. The only action of P0 is as follows:

P0 : x0 6= 0 −→ x0 := 0

The following two actions represent the transitions of P1.

(x1 = 1) ∧ (x0 = 0) −→ x1 := 0

x1 = 0 −→ x1 := 1

For simplicity, we represent a state of the program by a tuple 〈x1, x0〉.

Invariant. Since the program simulates an even counter, we represent the invariant

of the program by the state predicate Sctr ≡ (x0 = 0).
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Faults. Fault transitions perturb the value of x0 and arbitrarily change its value

from 0 to 1 and vice versa. The following action represents the fault transitions.

true −→ x0 := 0 | 1

Fault-span. The entire state space is the fault-span for faults that perturb x0.

Thus, we represent the fault-span of the program by the state predicate Tctr ≡ true.

Safety specification. Intuitively, the safety specification specifies that whenever

faults perturb the counter, the counting operation should stop until the program

returns to its invariant. In other words, the counter must not count from an odd

value to another odd value. We identify the safety of specification specctr by the

following set of transitions that the program is not allowed to execute:

specctr = {(s0, s1) | (x0(s0) = 1) ∧ (x0(s1) = 1) ∧ (x1(s1) 6= x1(s0))}

Observe that, p is potentially safe and specctr is f -safe.

The nonmasking program p is independent of x1 on Sctr. For two arbitrary

transitions of P0, say (s0, s1) and (s′0, s
′
1), that are grouped due to inability of P0 to

read x1, we show that the nonmasking program is independent of x1 on Sctr. Towards

this end, we first show that p is negative monotonic on Sctr with respect to x1, and

then, we show that p is positive monotonic on Sctr with respect to x1.

1. Negative monotonicity of p on Sctr with respect to x1. Consider (s0, s1),

where (x1(s0) = 1) and (x1(s1) = 1). Since there is no transition (s0, s1) in p|S,

where (x1(s0) = 1) and (x1(s1) = 1), p is negative monotonic on Sctr with

respect to x1.

2. Positive monotonicity of p on Sctr with respect to x1. Consider (s0, s1),

where (x1(s0) = 0) and (x1(s1) = 0). Since there is no transition (s0, s1) in

p|S, where (x1(s0) = 0) and (x1(s1) = 0), p is positive monotonic on Sctr with

respect to x1.
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As a result of the above argument, p is independent of x1 on Sctr. Now, we show

that specctr is independent of x1 on the fault-span Tctr.

For a given transition (s0, s1) of process P0, we let (x0(s0) = 1) and (x0(s1) = 0).

Since P0 cannot read x1, the transition (s0, s1) is grouped with a transitions (s′0, s
′
1),

where the value of x1 remains unchanged in (s′0, s
′
1). Now, using the definition of

program monotonicity,

specctr is independent of x1 on Tctr. Given two arbitrary transitions of P0, say

(s0, s1) and (s′0, s
′
1), that are grouped due to inability of P0 to read x1, we show that

the specification is both negative and positive monotonic on Tctr with respect to x1.

1. Positive monotonicity of specctr. Consider (s0, s1), where (x1(s0) = 0)

and (x1(s1) = 0), and (s0, s1) does not violate safety. If (x1(s
′
0) = 1) and

(x1(s
′
1) = 1) then (s′0, s

′
1) will not violate safety (because the value of x1 does

not change during this transition). Since we have chosen (s0, s1) and (s′0, s
′
1)

arbitrarily, the specification is positive monotonic on Tctr with respect to x1.

2. Negative monotonicity of specctr. A similar argument shows that the

specification is negative monotonic on Tctr with respect to x1.

Based on the above discussion, the specification is independent of x1 on Tctr.

Masking fault-tolerant program. The nonmasking program presented in this

section is potentially safe. Also, process P0 is independent of x1 on Sctr. Moreover,

the specification, specctr is f -safe and is independent of x1 on Tctr. Therefore, using

Theorem 5.22, we can derive a masking fault-tolerant version of p in polynomial time.

In the synthesis of masking program, we remove the transition from 〈0, 1〉 to 〈1, 1〉.

The action of P0 remains as is, and the actions of P1 are as follows:

(x1 = 1) ∧ (x0 = 0) −→ x1 := 0

(x1 = 0) ∧ (x0 = 0) −→ x1 := 1
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5.5 Enhancement versus Addition

In this section, we compare the complexity of enhancement with adding masking fault-

tolerance. Specifically, we first discuss enhancement in high atomicity with respect

to Add Masking algorithm represented in Subsection 2.7.3. Subsequently, we compare

the complexity of these two algorithms for distributed programs (i.e., low atomicity

model).

Complexity of enhancement versus addition in high atomicity. Since

Add Masking tries to add both safety and recovery simultaneously, it is more com-

plex than High Atomicity Enhancement presented in this chapter. More specifi-

cally, the asymptotic complexity of High Atomicity Enhancement is less than that of

Add masking. Thus, if the state space of the problem at hand prevents the addition of

masking fault-tolerance to a fault-intolerant program, it may be possible to partially

automate the design of a masking fault-tolerant program by manually designing a

nonmasking fault-tolerant program and enhancing its fault-tolerance to masking us-

ing automated techniques.

The algorithm High Atomicity Enhancement adds safety to a nonmasking fault-

tolerant program while ensuring that the recovery provided by it continues to be

satisfied. We note that the asymptotic complexity of High Atomicity Enhancement

is the same as the complexity of adding failsafe fault-tolerance to a fault-intolerant

program. In other words, in High Atomicity Enhancement, the recovery is preserved

for free!

Complexity of enhancement versus addition in low atomicity. We com-

pare the cost of adding masking fault-tolerance to a fault-intolerant distributed pro-

gram and the cost of enhancing the fault-tolerance of a nonmasking fault-tolerant

distributed program to masking. Asymptotically speaking, adding masking (re-

spectively, failsafe) fault-tolerance to a fault-intolerant distributed program is NP-

complete [1, 31]. Therefore, it is expected that the enhancement problem —that adds
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safety while preserving recovery— for distributed programs will also be NP-complete.

Although the enhancement problem may not provide relief in terms of the worst-

case complexity, we find that it helps in developing heuristics that determine if safe

recovery is possible from states that are reached in the presence of faults. More

specifically, consider a state, say s, that is reached in a computation of the fault-

intolerant program in the presence of faults. While adding masking fault-tolerance

to a fault-intolerant program, we need to exhaustively search all possible transition

sequences from s to determine if recovery from s is possible. By contrast, while

enhancing the fault-tolerance of a nonmasking fault-tolerant program, we reuse the

recovery provided by the nonmasking fault-tolerant program. Hence, we need to

check only the transition sequences that the nonmasking fault-tolerant program can

produce. It follows that deriving heuristics that determine if safe recovery is possible

from a given state is simpler in the enhancement problem.

The enhancement problem also allows us to deduce additional information about

states by reasoning in the high atomicity model. We illustrate this by one example

that occurs in Byzantine agreement. Consider a state s0 where all processes are non-

Byzantine, d.j =d.k=⊥, d.g=1, d.l=1 and f.l=0. Let s1 be a state that is identical

to s0 except that the value of f.l in s1 is 1. Now, consider the transition (s0, s1). Note

that both s0 and s1 are in the invariant, SNB. Hence, for a synthesis algorithm, this

appears as a good transition that should be retained in the fault-tolerant program.

However, from s1, if g becomes Byzantine and changes d.g, we can reach a state where

d.g, d.j, and d.k become 0. The resulting state is a deadlock state.

While adding masking fault-tolerance to a fault-intolerant program, it is difficult to

check that all computations that (1) start from s1, (2) in which g becomes Byzantine,

and (3) in which g changes d.g to 0 are deadlock states. Moreover, if we ignore

the grouping restrictions imposed by the low atomicity model, i.e., if we could read

and write all variables in one atomic step then recovery would be possible from s1.
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However, in the context of the enhancement problem, we concluded that even in the

high atomicity model, we could not recover from state s1 by reusing the transitions

of the nonmasking fault-tolerant program.

We expect that such high atomicity reasoning will play an important role in re-

ducing complexity in the enhancement problem. To reduce the complexity of adding

fault-tolerance in the low atomicity model, it is desirable to reason about the input

program in the high atomicity model, obtain a high atomicity masking fault-tolerant

program, and modify that high atomicity masking fault-tolerant program so that

the restrictions of the low atomicity model are satisfied while preserving the masking

fault-tolerance. As the Byzantine agreement example illustrates, this approach can be

followed while enhancing the fault-tolerance of a nonmasking fault-tolerant program.

However, this approach could not be used while adding masking fault-tolerance to a

fault-intolerant program.

5.6 Summary

In this chapter, we defined the problem of enhancing the fault-tolerance level of a

nonmasking program to masking. This problem separates (1) the task of adding re-

covery, and (2) the task of maintaining the safety specification during recovery. For

the high atomicity model, we presented a sound and complete algorithm for the en-

hancement problem. We showed that the complexity of our high atomicity algorithm

is asymptotically less than Add Masking algorithm (cf. Subsection 2.7.3). For dis-

tributed programs, we presented a sound algorithm for the enhancement problem.

We also showed that our fault-tolerance enhancement algorithm for distributed pro-

grams resolves some of the difficulties encountered in adding safe recovery transitions

in [14].

As an illustration of our algorithms, we showed how masking fault-tolerant pro-

grams for TMR (in high atomicity model) and Byzantine agreement (for distributed
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programs) can be designed by enhancing the fault-tolerance of the corresponding

nonmasking programs. We chose these examples as masking fault-tolerant versions

of these programs have been manually designed from the corresponding nonmasking

fault-tolerant versions [32]. The results in this chapter show that those enhancements

can in fact be automated as well.

Also, we argued that enhancing the fault-tolerance of a distributed program is

simpler than adding masking fault-tolerance to its fault-intolerant version. We vali-

dated this result by comparing the derivation of a masking fault-tolerant Byzantine

agreement program from the corresponding fault-intolerant version and from the cor-

responding nonmasking version.

Moreover, we have used the monotonicity property (presented in Section 4.3)

to identify sufficient conditions under which the enhancement of fault-tolerance can

be done in polynomial time. Specifically, we presented a sufficiency theorem and we

enhanced the fault-tolerance of a distributed counter to masking fault-tolerance using

our sufficiency theorem.
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Chapter 6

Pre-Synthesized Fault-Tolerance

Components

In this chapter, we present a synthesis approach that adds pre-synthesized fault-

tolerance components to a given fault-intolerant program in the synthesis of its fault-

tolerant version. Techniques presented in [14] and Chapters 4 and 5 respectively

reduce the complexity of synthesis by using heuristics and by identifying classes of

programs and specifications for which efficient synthesis is possible. However, these

techniques cannot apply the lessons learnt in synthesizing one fault-tolerant program

while synthesizing another fault-tolerant program. The synthesis method presented

in this chapter allows us to recognize the patterns that we often apply in the synthesis

of fault-tolerant distributed programs. Then, we organize those patterns in terms of

fault-tolerance components and reuse them in the synthesis of new problems.

To investigate the use of pre-synthesized fault-tolerance components in the syn-

thesis of fault-tolerant programs from their fault-intolerant version, we use detectors

and correctors identified in [33, 10]. Specifically, in [33, 10], Arora and Kulkarni

have shown that detectors and correctors suffice in the manual design of a rich class

of fault-tolerant programs. Hence, we expect to benefit from the generality of such
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components in automated synthesis of fault-tolerant programs. Thus, in this chapter,

we present a synthesis approach that adds pre-synthesized detectors and correctors

to a given fault-intolerant program in order to synthesize its fault-tolerant version.

In particular, we focus on adding masking fault-tolerance where we address issues

regarding the representation, the specification, and the addition of pre-synthesized

fault-tolerance components. In general, our synthesis method is applicable for adding

failsafe and nonmasking fault-tolerance as well.

As a running example, we synthesize a token ring program that consists of 4

processes and is subject to process-restart faults. The masking fault-tolerant (token

ring) program can recover even from the situation where every process is corrupted.

We note that the previous approaches that added fault-tolerance to the token ring

program presented in this chapter assumed that at least one process is not corrupted.

We proceed as follows: in Section 6.1, we formally state the problem of adding

fault-tolerance components to fault-intolerant programs. Then, in Section 6.2, we

present a synthesis method that identifies when and how the synthesis algorithm de-

cides to add a component. Subsequently, in Section 6.3, we formally describe how we

represent a fault-tolerance component. In Section 6.4, we show how we automatically

specify a component and add it to a program. In Section 6.5, we show how we reuse

a linear pre-synthesized component in the synthesis of an alternation bit protocol.

Afterwards, in Sections 6.6, we apply our synthesis method for adding nonmasking

fault-tolerance to a diffusing computation program with a tree-like structure where we

show that our synthesis method is applicable for programs with hierarchical topolo-

gies. In Section 6.7, we address some of the questions raised by the synthesis method

presented in this chapter. Finally, we summarize our discussion in Section 6.8.
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6.1 Problem Statement

In this section, we formally define the problem of adding fault-tolerance components

to a fault-intolerant program. We identify the conditions of the addition problem by

which we can verify the correctness of the synthesized fault-tolerant program after

adding fault-tolerance components.

Given a fault-intolerant program p, its state space Sp, its invariant S, its specifica-

tion spec, and a class of faults f , we add pre-synthesized fault-tolerance components

(i.e., detectors and correctors) to p in order to synthesize a fault-tolerant program p′

with the new invariant S ′. When we add a fault-tolerance component to p, we also

add the variables associated with that component. As a result, we expand the state

space of p. The new state space, say Sp′ , is actually the state space of the synthesized

fault-tolerant program p′.

After the addition, we require the fault-tolerant program p′ to behave similar to

p in the absence of faults f . In the presence of faults f , p′ should satisfy masking

fault-tolerance. To ensure the correctness of the synthesized fault-tolerant program

in the new state space, we need to identify the conditions that have to be met by the

synthesized program, p′. Towards this end, we define a projection from Sp′ to Sp using

onto function H : Sp′ → Sp. We apply H on states, state predicates, transitions, and

groups of transitions in Sp′ to identify their corresponding entities in Sp.

Let the invariant of the synthesized program be S ′ ⊆ Sp′ . If there exists a state

s′0 ∈ S ′ where H(s′0) /∈ S then in the absence of faults p′ can start at s′0 whose image,

H(s′0), is outside S. As a result, in the absence of faults, p′ will include computations

in the new state space Sp′ that do not have corresponding computations in p. These

new computations resemble new behaviors in the absence of faults, which is not

desirable. Therefore, we require that H(S ′) ⊆ S. Also, if p′ contains a transition

(s′0, s
′
1) in p′|S ′ that does not have a corresponding transition (s0, s1) in p|H(S ′) (where

H(s′0) = s0 and H(s′1) = s1) then p′ can take this transition and create a new way for
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satisfying spec in the absence of faults. Therefore, we require that H(p′|S ′) ⊆ p|H(S ′).

Now, we present the problem of adding fault-tolerance components to p.

The Addition Problem.

Given p, S, spec, f , with state space Sp such that p satisfies spec from S,

Sp′ is the new state space due to adding fault-tolerance components to p,

H : Sp′ → Sp is an onto function,

Identify p′ and S ′ ⊆ Sp′ such that

H(S ′) ⊆ S,

H(p′|S ′) ⊆ p|H(S ′), and

p′ is masking f -tolerant for spec from S ′.

6.2 The Synthesis Method

In this section, we present a synthesis method to solve the addition problem of Section

6.1. In Section 6.2.1, we present a high level description of our synthesis method

and express our approach for combining heuristics from [14] (cf. Section 6.2.2 for

an example heuristic) with pre-synthesized components. Then, in Section 6.2.2, we

illustrate our synthesis method using a simple example, a token ring program with

4 processes. We use the token ring program as a running example in the rest of the

chapter, where we synthesize a token ring program that is masking fault-tolerant to

process-restart faults.

6.2.1 Overview of Synthesis Method

Our synthesis method takes as its input a fault-intolerant program p with a set of

processes P0 · · ·Pn (n > 1), its specification spec, its invariant S, a set of read/write

restrictions r0 · · · rn and w0 · · ·wn, and a class of faults f to which we intend to add

fault-tolerance. The synthesis method outputs a fault-tolerant program p′ and its

invariant S ′.
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The heuristics in [14] (i) add safety to ensure that the masking fault-tolerant

program never violates its safety specification, and (ii) add recovery to ensure that the

masking fault-tolerant program never deadlocks (respectively, livelocks). Moreover,

while adding recovery transitions, it is necessary to ensure that all the groups of

transitions included along that recovery transition are safe unless it can be guaranteed

(with the help from heuristics) that those transitions cannot be executed. Thus,

adding recovery transitions from deadlock states is one of the important issues in

adding fault-tolerance. Hence, the method presented in this chapter, focuses on

adding pre-synthesized components for resolving deadlock states.

Now, in order to resolve a deadlock state, say sd, using our hybrid approach, we

proceed as follows: First, for each process Pi in the given fault-intolerant program, we

introduce a high atomicity pseudo process PSi. Initially, PSi has no action to execute,

however, we allow PSi to read all program variables and write only those variables

that Pi can write. Using these special processes, we now present the ResolveDeadlock

routine (cf. Figure 6.1) that is the core of our synthesis method. The input of

ResolveDeadlock consists of the deadlock state that needs to be resolved, sd, and the

set of high atomicity pseudo processes PSi (0 ≤ i ≤ n).

Resolve Deadlock(sd: state, PS0, · · · , PSn: high atomicity pseudo process)
{
Step 1. If Add Recovery (sd) then return true.
Step 2. Else non-deterministically choose a PSindex, where 0 ≤ index ≤ n and PSindex

adds a high atomicity recovery action grd → st

Step 3. If (there exists a PSindex) and (there exists a detector d in the component
library that suffices to refine grd → st without interfering with the program)
then add d to the program, and return true.
else return false.

// Subsequently, we remove some transitions to make sd unreachable.
}

Figure 6.1: Overview of the synthesis method.

First, in Step 1, we invoke a heuristic-based routine Add Recovery to add recovery

from sd under the distribution restrictions (i.e., in the low atomicity model) – where

program processes have read/write restrictions with respect to the program variables.
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Add Recovery explores the ability of each process Pi to add recovery transition from

sd under the distribution restrictions. If Add Recovery fails then we will choose to

add a fault-tolerance component in Steps 2 and 3.

In Steps 2 and 3, we identify a fault-tolerance component and then add it to p

in order to resolve sd. To add a fault-tolerance component, the synthesis algorithm

should (i) specify the required component; (ii) retrieve the specified component from

a given library of components; (iii) ensure the interference freedom of the composition

of the component and the program, and finally (iv) add the extracted component to

the program. As a result, adding a pre-synthesized component is a costly opera-

tion. Hence, we prefer to add a component during the synthesis only when available

heuristics for adding recovery fail in Step 1.

To identify the required fault-tolerance components, we use pseudo process PSi

that can read all program variables and write wi (i.e., the set of variables that Pi can

write). In other words, we check the ability of each PSi to add high atomicity recovery

– where we have no read restrictions – from sd. If no PSi can add recovery from sd

then our algorithm fails to resolve sd. If there exist one or more pseudo processes

that add recovery from sd then we non-deterministically choose a process PSindex

with high atomicity action ac : grd → st. Since we give PSindex the permission to

read all program variables for adding recovery from sd, the guard grd is a global state

predicate that we need to refine. If there exists a detector that can refine grd without

interfering with the program execution then we will add that detector to the program.

(We present the discussion about how to specify the required detector d and how to

add d to the fault-intolerant program in Sections 6.3 and 6.4.)

In cases where Resolve Deadlock returns false, we remove some transitions to

make sd unreachable. If we fail to make sd unreachable then we will declare failure

in the synthesis of the masking fault-tolerant program p′. Observe that by using pre-

synthesized components, we increase the chance of adding recovery from sd, and as a
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result, we reduce the chance of reaching a point where we declare failure to synthesize

a fault-tolerant program.

6.2.2 Token Ring Example

In this subsection, we introduce a token ring program with 4 processes that is subject

to process restart faults. Using our synthesis method (cf. Figure 6.1), we synthesize

a token ring program that is masking fault-tolerant for the case where all processes

are corrupted.

The token ring program. The fault-intolerant program consists of four processes

P0, P1, P2, and P3 arranged in a ring. Each process Pi has a variable xi (0 ≤ i ≤ 3)

with the domain {⊥, 0, 1}. Due to distribution restrictions, process Pi can read xi

and xi−1 and can only write xi (1 ≤ i ≤ 3). P0 can read x0 and x3 and can only

write x0. We say, a process Pi (1 ≤ i ≤ 3) has the token iff xi 6= xi−1 and fault

transitions have not corrupted Pi and Pi−1. And, P0 has the token iff x3 = x0 and

fault transitions have not corrupted P0 and P3. A process Pi (1 ≤ i ≤ 3) copies xi−1

to xi if the value of xi is different from xi−1. Also, if x0 =x3 then process P0 copies

the value of (x3 ⊕ 1) to x0, where ⊕ is addition in modulo 2. This way, a process

passes the token to the next process.

We represent a state s of the token ring program by a 4-tuple 〈x0, x1, x2, x3〉. Each

element of the 4-tuple 〈x0, x1, x2, x3〉 represents the value of xi in s (0 ≤ i ≤ 3). Thus,

if we start from initial state 〈0, 0, 0, 0〉 then process P0 has the token and the token

circulates along the ring. We represent the transitions of the fault-intolerant program

TR by the following actions (1 ≤ i ≤ 3).

TR0 : (x0 = 1) ∧ (x3 = 1) −→ x0 := 0; TRi : (xi = 0) ∧ (xi−1 = 1) −→ xi := 1;

TR′
0 : (x0 = 0) ∧ (x3 = 0) −→ x0 := 1; TR′

i : (xi = 1) ∧ (xi−1 = 0) −→ xi := 0;

Faults. Faults can restart a process Pi. Thus, the value of xi becomes unknown.

Hence, we model faults by setting the value of xi to an unknown value ⊥.
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Specification. The problem specification requires that the corrupted value of one

process does not affect a non-corrupted process, and there is only one process that

has the token.

Invariant. The invariant of the above program includes states 〈0, 0, 0, 0〉, 〈1, 0, 0, 0〉,

〈1, 1, 0, 0〉, 〈1, 1, 1, 0〉, 〈1, 1, 1, 1〉, 〈0, 1, 1, 1〉, 〈0, 0, 1, 1〉, and 〈0, 0, 0, 1〉.

A heuristic for adding recovery. In the presence of faults, the program TR may

reach states where there exists at least a process Pi (0 ≤ i ≤ 3) whose xi is corrupted

(i.e., xi = ⊥). In such cases, processes Pi and P((i+1) mod 4) cannot take any transition,

and as a result, the propagation of the token stops (i.e., the whole program deadlocks).

In order to recover from the states where there exist some corrupted processes, we

apply the heuristic for single-step recovery from [14] in an iterative fashion. Specifi-

cally, we identify states from where single-step recovery to a set of states RecoverySet

is possible. The initial value of RecoverySet is equal to the program invariant. At

each iteration, we include a set of states in RecoverySet from where single-step re-

covery to RecoverySet is possible.

In the first iteration, we search for deadlock states where there is only one cor-

rupted process in the ring. For example, consider a state s0 = 〈1,⊥, 1, 0〉. In state

s0, P1 and P2 cannot take any transitions. However, P3 can copy the value of x2

and reach s2 = 〈1,⊥, 1, 1〉. Subsequently, P0 changes x0 to 0, and as a result, the

program reaches state s3 = 〈0,⊥, 1, 1〉. The state s3 is a deadlock state since no

process can take any transition at s3. To add recovery from s3, we allow P1 to correct

itself by copying the value of x0, which is equal to 0. Thus, by copying the value

of x0, P1 adds a recovery transition to an invariant state 〈0, 0, 1, 1〉. Therefore, we

include s3 in the set of states RecoverySet in the first iteration. Note that this recov-

ery transition is added in low atomicity in that all the transitions included in action

(x0 = 0)∧ (x1 = ⊥) → x1 := 0 can be included in the fault-tolerant program without

violating safety.
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In the second and third iterations, we follow the same approach and add recovery

from states where there are two or three corrupted processes to states that we have

already resolved in the previous iterations. Adding recovery up to the fourth iteration

of our heuristic results in the intermediate program ITR (1 ≤ i ≤ 3).

ITR0 : ((x0 = 1) ∨ (x0 = ⊥)) ∧ (x3 = 1) −→ x0 := 0;

ITR′
0 : ((x0 = 0) ∨ (x0 = ⊥)) ∧ (x3 = 0) −→ x0 := 1;

ITRi : ((xi = 0) ∨ (xi = ⊥)) ∧ (xi−1 = 1) −→ xi := 1;

ITR′
i : ((xi = 1) ∨ (xi = ⊥)) ∧ (xi−1 = 0) −→ xi := 0;

Using above heuristic, we can only add recovery from the states where there exists

at least one uncorrupted process. If there exists at least one uncorrupted process Pj

(0 ≤ j ≤ 3) then P((j+1) mod 4) will initiate the token circulation throughout the

ring, and as a result, the program recovers to its invariant. However, in the fourth

iteration of the above heuristic, we reach a point where we need to add recovery

from the state where all processes are corrupted; i.e., we reach the program state

sd = 〈⊥,⊥,⊥,⊥〉. In such a state, the program ITR deadlocks as an action of the

form (x0 = ⊥)∧(x1 = ⊥) → x1 := 0 cannot be included in the fault-tolerant program.

Such an action can violate safety if x2 and x3 are not corrupted. In fact, no process

can add safe recovery from sd in low atomicity. Thus, Add Recovery returns false for

〈⊥,⊥,⊥,⊥〉.

Adding the actions of the high atomicity pseudo process. In order to add

masking fault-tolerance to the program ITR, a process Pindex (0 ≤ index ≤ 3) should

set its x value to 0 (respectively, 1) when all processes are corrupted. Hence, we

follow our synthesis method (cf. Figure 6.1), where the pseudo process PS0 takes the

high atomicity action HTR and recovers from sd. Thus, the actions of the masking

program MTR are as follows (1 ≤ i ≤ 3).

MTR0 : ((x0 = 1) ∨ (x0 = ⊥)) ∧ (x3 = 1) −→ x0 := 0;

MTR′
0 : ((x0 = 0) ∨ (x0 = ⊥)) ∧ (x3 = 0) −→ x0 := 1;
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MTRi : ((xi = 0) ∨ (xi = ⊥)) ∧ (xi−1 = 1) −→ xi := 1;

MTR′
i : ((xi = 1) ∨ (xi = ⊥)) ∧ (xi−1 = 0) −→ xi := 0;

HTR : (x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥)−→ x0 := 0;

In order to refine the high atomicity action HTR, we need to add a detector that

detects the state predicate (x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥). In Section

6.3, we describe the specification of fault-tolerance components, and we show how we

use a distributed detector to refine high atomicity actions.

Remark. Had we non-deterministically chosen to use PSi (i 6= 0) as the process that

adds the high atomicity recovery action then the high atomicity action HTR would

have been different in that HTR would write xi. (We refer the reader to Section 6.7

for a discussion about this issue.)

6.3 Specifying Pre-Synthesized Components

In this section, we describe the specification of fault-tolerance components (i.e., de-

tectors and correctors). Specifically, we concentrate on detectors and we consider

a special subclass of correctors where a corrector consists of a detector and a write

action on the local variables of a single process.

6.3.1 The Specification of Detectors

We recall the specification of a detector component presented in [34, 33]. Towards

this end, we describe detection predicates, and witness predicates. A detector, say d,

identifies whether or not a global state predicate, X, holds. The global state predicate

X is called a detection predicate in the global state space of a distributed program

[34, 33].

It is often difficult to evaluate the truth value of X in an atomic action. Thus,

we (i) decompose the detection predicate X into a set of smaller detection predicates

X0 · · ·Xn where the compositional detection of X0 · · ·Xn leads us to the detection

of X, and (ii) provide a state predicate, say Z, whose value leads the detector to
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the conclusion that X holds. Since when Z becomes true its value witnesses that

X is true, we call Z a witness predicate. If Z holds then X will have to hold as

well. If X holds then Z will eventually hold and continuously remain true. Hence,

corresponding to each detection predicate Xi, we identify a witness predicate Zi such

that if Zi is true then Xi will be true.

The detection predicate X is either the conjunction of Xi (0 ≤ i ≤ n) or the

disjunction of Xi. Since the detection predicates that we encounter represent deadlock

states, they are inherently in conjunctive form where each conjunct represents the

valuation to program variables at some process. Hence, in the rest of this chapter,

we consider the case where X is a conjunction of Xi, for 0 ≤ i ≤ n.

Specification. Let X and Z be state predicates. Let ‘Z detects X’ be the problem

specification. Then, ‘Z detects X’ stipulates that

• (Safety) When Z holds, X must hold as well.

• (Liveness) When the predicate X holds and continuously remains true, Z will

eventually hold and continuously remain true.

We represent the safety specification of a detector as a set of transitions that a

detector is not allowed to execute. Thus, the following set of transitions represents

the safety specification of a detector.

specd = {(s0, s1) : (Z(s1) ∧ ¬X(s1))}

6.3.2 The Representation of Detectors

In this section, we describe how we formally represent a distributed detector. While

our method allows one to use detectors of different topologies (cf. Section 6.4.1), in

this section, we comprehensively describe the representation of a linear (sequential)

detector as such a detector will be used in our token ring example.

The composition of detectors. A detector, say d, with the detection predicate

X ≡ X0 ∧ . . .∧Xn is obtained by composing di, 0 ≤ i ≤ n, where di is responsible for
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the detection of Xi using a witness predicate Zi (0 ≤ i ≤ n). The elements of d can

execute in parallel or in sequence. More specifically, parallel detection of X requires

d0 · · · dn to execute concurrently. As a result, the state predicate (Z0 ∧ · · · ∧ Zn) is

the witness predicate for detecting X.

A sequential detector requires the detectors d0, · · · , dn to execute one after an-

other. For example, given a linear arrangement dn · · · d0, a detector di (0 ≤ i < n)

detects its detection predicate, using Zi, after di+1 witnesses. Thus, when Zi be-

comes true, it shows that Zi+1 already holds. Since when Zi becomes true Xi must

be also true, it follows that the detection predicates Xn · · ·Xi hold. Therefore, we

can atomically check the witness predicate Z0 in order to identify whether or not

X ≡ (Xn ∧ · · · ∧ X0) holds.

The detection of global state predicates of programs that have a hierarchical topol-

ogy (e.g., tree-like structures) requires parallel and sequential detectors. In this sec-

tion, we demonstrate our method in the context of a linear detector as such a detector

suffices for the token ring example. In Section 6.6, we apply our synthesis method for

the synthesis of a diffusing computation program using components with hierarchical

topology.

A linear detector. We consider a detector d with linear topology. The detector

d consists of n + 1 elements (n > 0), its specification specd, its variables, and its

invariant U . Since the structure of the detector is linear, without loss of generality,

we consider an arrangement dn · · · d0 for the elements of the distributed detector,

where the left-most element is dn and the right-most element is d0.

Component variables. Each element di, 0 ≤ i ≤ n, of the detector has a Boolean

variable yi.

Read/write restrictions. Element di can read yi and yi+1, and can only write yi

(0 ≤ i < n). dn reads and writes yn. Also, di is allowed to read all variables that Pi

can read (i.e., the process with which di is composed).
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Witness predicates. The witness predicate of each di, say Zi, is equal to (yi =

true).

The detector actions. The actions of the linear detector are as follows (0 ≤ i < n).

DAn : (LCn) ∧ (yn = false) −→ yn := true;

DAi : (LCi) ∧ (yi = false) ∧ (yi+1 = true) −→ yi := true;

Using action DAi (0 ≤ i < n), each element di of the linear detector witnesses

(i.e., sets the value of yi to true) whenever (i) the condition LCi becomes true, where

LCi represents a local condition that di atomically checks (by reading the variables

of Pi), and (ii) its neighbor di+1 has already witnessed. The detector dn witnesses

(using action DAn) when LCn becomes true.

Detection predicates. The detection predicate Xi for element di is equal to

(LCn ∧ · · · ∧ LCi) (0 ≤ i ≤ n). Therefore, d0 detects the global detection predicate

LCn ∧ · · · ∧ LC0.

Invariant. During the detection, when an element di sets yi to true, the elements

dj, for i < j ≤ n, have already set their y values to true. Hence, we represent the

invariant of the linear detector by the predicate U , where

U = {s : (∀i : (0 ≤ i ≤ n) : (yi(s) ⇒ (∀j : (i < j ≤ n) : LCj))}

Faults. We model the fault transitions that affect the linear detector using the

following action (cf. Section 6.7 for a discussion about the way that we have modeled

the faults).

F : true −→ yi := false;

Theorem 6.1 The linear detector is masking F -tolerant for ‘Z detects X’ from U .

Proof. The linear detector satisfies ‘Z detects X’ from U . Also, in the presence of

F , no element di (0 ≤ i ≤ n) of the detector will reach a state where di witnesses

incorrectly. As a result, the linear detector never violates the safety of ‘Z detects
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X’ in the presence of F . Also, when faults stop occurring, the actions of the linear

detector correct the corrupted values of yi if necessary. Thus, every computation of

the linear detector in the presence of F will eventually reach a state in U . Therefore,

the linear detector component is masking F -tolerant for ‘Z detects X’ from U .

6.3.3 Token Ring Example Continued

In Section 6.2.2, we added the following high atomicity action to the token ring

program ITR that is executed by the pseudo process PS0.

HTR : (x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥) −→ x0 := 0

In order to synthesize a distributed program (that includes low atomicity actions),

we need to refine the guard of the above action. The read/write restrictions of the

processes in the token ring program identify the underlying communication topology

of the fault-intolerant program, which is a ring. Hence, we select a linear detector,

d, so that we can organize its elements, d3, d2, d1, d0, in the ring. Each detector di

is responsible to detect whether or not the local conditions LC3 to LCi hold (LCi ≡

(xi = ⊥)), for 0 ≤ i ≤ 3. Thus, the detection predicate Xi is equal to ((x3 =

⊥) ∧ · · · ∧ (xi = ⊥)), for 0 ≤ i ≤ 3. As a result, the global detection predicate of the

linear detector is ((x3 = ⊥)∧ (x2 = ⊥)∧ (x1 = ⊥)∧ (x0 = ⊥)). The witness predicate

of each di, say Zi, is equal to (yi = true), and the actions of the sequential detector

are as follows (0 ≤ i ≤ 2).

DA3 : (x3 = ⊥) ∧ (y3 = false) −→ y3 := true;

DAi : (xi = ⊥) ∧ (yi = false) ∧ (yi+1 = true) −→ yi := true;

Note that we replace (LCi) with (xi = ⊥) in the above actions. During the

synthesis, after the synthesis algorithm acquires the actions of its required component,

it replaces each (LCi) with the appropriate condition in order to create the transition

groups corresponding to each action of the component.
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6.4 Using Pre-Synthesized Components

In this section, we describe how we perform the second and the third step of our

synthesis approach presented in Figure 6.1. In particular, in Section 6.4.1, we show

how we automatically specify the required components during the synthesis. Then, in

Section 6.4.3, we show how we ensure that no interference exists between the program

and the fault-tolerance component. Afterwards, we present an algorithm for the

addition of fault-tolerance components. In Sections 6.4.2 and 6.4.4, we respectively

present the algorithmic specification and the algorithmic addition of a linear detector

to the token ring program.

6.4.1 Algorithmic Specification of the Fault-Tolerance Com-

ponents

We present the Component Specification algorithm (cf. Figure 6.2) that takes a dead-

lock state sd, the distribution restrictions (i.e., the read/write restrictions) of the

program being synthesized, and the set of high atomicity pseudo processes PSi

(0 ≤ i ≤ n). First, the algorithm searches for a high atomicity process PSindex

that is able to add a high atomicity recovery action, ac : grd → st, from sd to a state

in the state predicate Srec, where Srec represents the set of states from where there

exists a safe recovery path to the invariant. Also, we verify the closure of Srec ∪ sd in

the computations of p[]f . If there exists such a process PSindex then the algorithm

returns a triple 〈X,R, index〉, where (i) X is the detection predicate that should be

refined in the refinement of the action ac; (ii) R is a relation that represents the

topology of the program, and (iii) the index is an integer that identifies the process

that should detect grd and execute st.

The Component Specification algorithm constructs the state predicate X using

the LCi conditions. Each LCi condition is by itself a conjunction that consists of

the program variables readable for process Pi. Therefore, the predicate X will be the
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conjunction of LCi conditions (0 ≤ i ≤ n).

Component Specification(sd: state, Srec: state predicate, PS0, · · · , PSn: high atomicity pseudo
process, spec: safety specification, r0, · · · , rn: read restrictions, w0, · · · , wn: write restrictions)

{ // n is the number of processes.
if ( ∃index : 0 ≤ index ≤ n : (∃s : s ∈ Srec : (sd, s) ∈ PSindex ∧ ((sd, s) does not violate spec) ∧

(∀x : (x(sd) 6= x(s)) : x ∈ windex)) )

then X := ∧n
i=0

(LCi), where LCi = (∧|ri|(x = x(sd)));
R = {〈i, j〉 : (0 ≤ i ≤ n) ∧ (0 ≤ j ≤ n) : wi ⊆ rj};
return X , R, index;

else return false, ∅, -1;
}

Figure 6.2: Automatic specification of a component.

The relation R ⊆ (P×P ) identifies the communication topology of the distributed

program, where P is the set of program processes. We represent R by a finite set

{〈i, j〉 : (0 ≤ i ≤ n) ∧ (0 ≤ j ≤ n) : wi ⊆ rj} that we create using the read/write

restrictions among the processes. The presence of a pair 〈i, j〉 in R shows that there

exists a communication link between Pi and Pj. Since we internally represent R by

an undirected graph, we consider the pair 〈i, j〉 as an unordered pair.

The interface of the fault-tolerance components. The format of the interface

of each component is the same as the output of the Component Specification algorithm,

which is a triple 〈X,R, index〉 as described above. We use this interface to extract

a component from the component library using a pattern-matching algorithm. To

achieve this goal, we use existing specification-matching techniques [35] for extracting

components from the component library.

The output of the component library. Given the interface 〈X,R, index〉 of

a required component, the component library returns the witness predicate, Z, the

invariant, U , and the set of transition groups, gd0 ∪ · · · ∪ gdk ∪ gindex, of the pre-

synthesized component (k ≥ 0). The group of transitions gindex represents the low

atomicity write action that should be executed by process Pindex.

Complexity. Since the algorithm Component Specification checks the possibility

of adding a high atomicity recovery action to each state of Srec, its complexity is

polynomial in the number of states of Srec.
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6.4.2 Token Ring Example Continued

We trace the algorithm of Figure 6.2 for the case of the token ring program. First,

we non-deterministically identify PS0 as the process that can read every program

variable and can add a high atomicity recovery transition from the deadlock state

sd = 〈⊥,⊥,⊥,⊥〉. Thus, the value of index will be equal to 0. Second, we construct

the detection predicate X, where X ≡ ((x0 = ⊥)∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥)).

Finally, using the read/write restrictions of the processes in the token ring program,

the relation R will be equal to {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 0〉}.

6.4.3 Algorithmic Addition of The Fault-Tolerance Compo-

nents

In this section, we present an algorithm for adding a fault-tolerance component to

a fault-intolerant distributed program to resolve a deadlock state sd. Before the

addition, we ensure that no interference exists between the program and the fault-

tolerance component that we add. We show that our addition algorithm is sound;

i.e., the synthesized program satisfies the requirement of the addition problem (cf.

Section 6.1).

We recall the structure of the fault-intolerant program, p, from the first paragraph

of Section 6.2.1. We represent the transitions of p by the union of its groups of

transitions (i.e., ∪m
i=0gi). We also assume that we have extracted the required pre-

synthesized component, c, as described in Section 6.4.1. The component c consists

of a detector d that includes a set of transition groups ∪k
i=0gdi, and the write action

of the pseudo process PSindex represented by a group of transitions gindex in the low

atomicity.

The state space of the composition of p and d is the new state space Sp′ . We

introduce an onto function H1 : Sp′ → Sp (respectively, H2 : Sp′ → Sd, where Sd is

the state space of the detector d) that maps the states in the new state space Sp′ to
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the states in the old state space Sp (respectively, Sd). Now, we show how we verify

the interference-freedom of the composition of c and p.

Interference-freedom. We say the program p and the fault-tolerance component c

interfere iff the execution of one of them violates the (safety or liveness) specification

of the other one. In order to ensure that no interference exists between p and c, we

verify the following three conditions in the new state space Sp′ : (i) transitions of p

do not interfere with the execution of d; (ii) transitions of d do not interfere with the

execution of p, and (iii) the low atomicity write action associated with c does not

interfere with the execution of p and d. Towards this end, we present the algorithm

Interfere in Figure 6.3.

Interfere(S, Srec, U : state predicate, H1, H2: onto mapping function,
spec, specd: safety specification,
g0, · · · , gm, gd0, · · · , gdk, gindex: groups of transitions)

// Checks the interference-freedom between the program and
// the fault-tolerance component.
{ // p = g0 ∪ · · · ∪ gm, and d = gd0 ∪ · · · ∪ gdk ∪ gindex

// P0 · · ·Pn are the processes of p, and d0 · · · dn are the elements of d

I1 = {g : (∃gj : (gj ∈ p) ∧ (0 ≤ j ≤ m) : (H1(g) = gj)∧
(∃(s′

0
, s′

1
) : (s′

0
, s′

1
) ∈ g : ((s′

0
, s′

1
) violates specd) ∨

(H2(s
′

0
) ∈ U ∧ H2(s

′

1
) /∈ U))}

if (I1 6= ∅) then return true;
I2 = {gd : (∃gdj : (gdj ∈ d) ∧ (0 ≤ j ≤ k) : (H2(gd) = gdj) ∧

(∃(s′

0
, s′

1
) : (s′

0
, s′

1
) ∈ gd : ((s′

0
, s′

1
) violates spec) ∨
(H1(s

′

0
) ∈ S ∧ H1(s

′

1
) /∈ S))}

if (I2 6= ∅) then return true;
I3 := {g : (H2(g) = gindex) ∧ (∃(s′

0
, s′

1
) : (s′

0
, s′

1
) ∈ g : ((s′

0
, s′

1
) violates specd) ∨

(H1(s
′

1
) /∈ Srec) ∨ (H1(s

′

0
) ∈ S ∧ H1(s

′

1
) /∈ S) ∨

(H2(s
′

0
) ∈ U ∧ H2(s

′

1
) /∈ U) ∨ ((s′

0
, s′

1
) violates spec))}

if (I3 6= ∅) then return true;
return false;

}

Figure 6.3: Verifying the interference-freedom conditions.

First, we ensure that the set of transitions of p do not interfere with the execution

of d by constructing the set of groups of transitions I1, where I1 contains those groups
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of transitions in the new state space Sp′ that violate either the safety of d or the closure

of its invariant U . The transitions of p do not interfere with the liveness of d because

d executes only when p is deadlocked in the state sd. Hence, we are only concerned

with the safety of the detector d and the closure of U . When we map the transitions

of p to the new state space, the mapped transitions should preserve the safety of d.

Moreover, if the image of a transition (s′0, s
′
1) starts in U (i.e., H2(s

′
0) ∈ U) then the

image of (s′0, s
′
1) will have to end in U (i.e., H2(s

′
1) ∈ U). The emptiness of I1 shows

that the transitions of p do not interfere with the execution of d.

Second, using a similar argument, we construct the set of groups of transitions I2

in the new state space Sp′ whose every transition is a mapping of the transitions of d

that violate either the safety of spec or violate the closure of the program invariant

S.

Third, if I1 and I2 are empty then it will follow that the detector d is able to

detect sd without interfering with p. However, after d detects its detection predicate,

the component c performs a write action to change the state of the program from

sd to a state s ∈ Srec, where Srec is the set of states from where safe recovery has

already been added. If a transition in the group associated with the write transition

(sd, s) violates (i) the safety of the detector; (ii) the safety of the program; (iii) the

closure of U , or (iv) the closure of S then the recovery action will interfere with the

program (see the construction of I3 in Figure 6.3). If I1, I2, and I3 are empty then

the Interfere algorithm declares that no interference will happen due to the addition

of c to p.

Addition. We present the Add Component algorithm for an

interference-free addition of the fault-tolerance component c to p.

Thus, if the Interfere algorithm returns false then we will invoke

Add Component (cf. Figure 6.4). In the new state space Sp′ , we construct a

set of transition groups pH1 (respectively, dH2) that includes all groups of transitions,
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g, whose images in Sp (respectively, Sd) belong to p (respectively, d). Besides, no

transition of (s′0, s
′
1) ∈ g violates the safety specification of d (respectively, p) or

the closure of the invariant of d (respectively, p), i.e., U (respectively, S). In the

calculation of dH2 , we note that the image of every group g in d and p must belong

to the same process (cf. condition (l = i) in the construction of dH2).

Add Component(S, Srec, U : state predicate, H1, H2: onto mapping function,
spec, specd: safety specification,
g0, · · · , gm, gd0, · · · , gdk, gindex: groups of transitions)

{ // p = g0 ∪ · · · ∪ gm, and d = gd0 ∪ · · · ∪ gdk ∪ gindex

// P0 · · ·Pn are the processes of p, and d0 · · ·dn are the elements of d

pH1
= {g : (∃gj : (gj ∈ p) ∧ (0 ≤ j ≤ m) : (H1(g) = gj) ∧

(∀(s′

0
, s′

1
) : (s′

0
, s′

1
) ∈ g : ((s′

0
, s′

1
) does not violate specd) ∧

(H2(s
′

0
) ∈ U ⇒ H2(s

′

1
) ∈ U))}

dH2
= {gd : (∃gdj : (gdj ∈ d) ∧ (0 ≤ j ≤ k) : (H2(gd) = gdj) ∧

(∃di, Pl : (0 ≤ i ≤ n) ∧ (0 ≤ l ≤ n) :
(H2(gd) ∈ di) ∧ (H1(gd) ∈ Pl) ∧ (l = i)) ∧

(∀(s′

0
, s′

1
) : (s′

0
, s′

1
) ∈ gd : ((s′

0
, s′

1
) does not violate spec) ∧

(H1(s
′

0
) ∈ S ⇒ H1(s

′

1
) ∈ S))}

pc := {g : (H2(g) = gindex) ∧ (∀(s′

0
, s′

1
) :

(s′

0
, s′

1
) ∈ g : ((s′

0
, s′

1
) does not violate spec) ∧ (H1(s

′

1
) ∈ Srec) ∧

(H2(s
′

0
) ∈ U ⇒ H2(s

′

1
) ∈ U) ∨ ((s′

0
, s′

1
) does not violate specd))}

S′ := {s : s ∈ Sp′ : H1(s) ∈ S ∧ H2(s) ∈ U}
p′ := pH1

∪ dH2
∪ pc;

return p′, S′;
}

Figure 6.4: The automatic addition of a component.

The set pc includes all groups of transitions, g, whose every transition has an

image in gindex under the mapping H2. Further, no transition (s′0, s
′
1) ∈ g violates the

safety of spec or the closure of S.

The set of states of the invariant of the synthesized program, S ′, consists of those

states whose images in Sp belong to the program invariant S and whose images in

the state space of the detector, Sd, belong to the detector invariant U .

Theorem 6.2 The algorithm Add Component is sound.
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Theorem 6.3 The complexity of Add Component is polynomial in |S ′
p|.

Before we show the soundness of Add Component, we make some observations

and present the following preliminary lemmas and theorems. Towards this end, we

assume that we are given a program p, its specification spec, its invariant S, its state

space Sp, faults f , and a deadlock state sdeadlock /∈ S. We consider the case where

we have already added safety to p and we only need to resolve sdeadlock to synthesize

the masking fault-tolerant program p′ with the invariant S ′ in the new state space

Sp′ . Towards this end, we use Add Component algorithm for adding a fault-tolerance

component c to p.

The component c consists of a distributed detector d, with the detection predicate

X, the witness predicate Z, an invariant U , and a low atomicity write action Z → st

that takes p from state sdeadlock to a state s ∈ Srec. The state predicate Srec represents

the set of states from where a safe recovery to the invariant S is guaranteed. By

definition, the set of states Srec includes the invariant S; i.e., S ⊆ Srec. Also, the set

Srec∪sdeadlock is closed in the computations of p[]f . However, because of the deadlock

state sdeadlock, recovery to S is not guaranteed from Srec ∪ sdeadlock.

We define two mapping functions H1 and H2 respectively from Sp′ to Sp and from

Sp′ to Sd, where Sd is the state space of the distributed detector d included in c.

In the Add Component algorithm, based on the construction of S ′, we include those

states in S ′ whose images in Sp belong to S. Thus,

Observation 6.4 ∀s : s ∈ S ′ : H1(s) ∈ S

Now, we present the following theorem.

Theorem 6.5 H1(S
′) ⊆ S.

Proof. The proof follows from Observation 6.4.

By construction, for every arbitrary group of transitions g ∈ pH1 (cf. Figure 6.4)

there exists a group of transitions gj ∈ p (0 ≤ j ≤ m). Now, if we consider a transition

(s′0, s
′
1) ∈ g such that s′0 ∈ S ′ and s′1 ∈ S ′ then using Observation 6.4, H1(s

′
0) ∈ S and
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H1(s
′
2) ∈ S. As a result, the condition (H1(s

′
0), H1(s

′
0)) ∈ p|H1(S

′) holds. Thus, we

have

Observation 6.6 ∀(s′0, s
′
1) : (s′0, s

′
1) ∈ pH1 : (((s′0, s

′
1) ∈ p′|S ′) ⇒ (H1((s

′
0, s

′
1)) ∈

p|H1(S
′)))

(H1((s
′
0, s

′
1)) denotes the transition (H1(s

′
0), H1(s

′
1)) in the state space Sp.)

Using a similar argument, we present the following observation.

Observation 6.7 ∀(s′0, s
′
1) : (s′0, s

′
1) ∈ dH2 : (((s′0, s

′
1) ∈ p′|S ′) ⇒ (H1((s

′
0, s

′
1)) ∈

p|H1(S
′)))

The transition groups of pc add recovery to sdeadlock. Also, by construction, for

every transition (s′deadlock, s
′
1) ∈ pc, Z(s′deadlock) holds. Thus, at s′deadlock the detector

detects the deadlock state sdeadlock. Since sdeadlock /∈ S, the state s′deadlock does not

belong to S ′. It follows that (s′deadlock, s
′
1) /∈ p′|S ′. Therefore, we observe that

Observation 6.8 ∀(s′0, s
′
1) : (s′0, s

′
1) ∈ pc : (((s′0, s

′
1) ∈ p′|S ′) ⇒ (H1((s

′
0, s

′
1)) ∈

p|H1(S
′)))

Using above observations, we present the second theorem.

Theorem 6.9 H1(p
′|S ′) ⊆ p|H1(S

′).

Proof. By the construction of p′, the proof follows from Observations 6.6, 6.7, and

6.8.

To show that p′ is masking f -tolerant for spec, we prove the following lemmas.

Lemma 6.10 From every state of S ′
rec safe recovery to S ′ with respect to spec is

guaranteed.

Proof. By definition, from every state of Srec safe recovery to S is guaranteed with

respect to spec. Now, let cmp be a computation of p′[]f that starts from a state in

S ′
rec. If cmp violates spec then there exists a computation prefix of cmp that violates

spec. Let 〈s′0, s′1, ..., s′n〉 be the smallest such prefix. It follows that (s′(n−1), s
′
n) violates

the safety of spec. As a result, (H1(s
′
(n−1)), H1(s

′
n)) is a transition of program p that
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violates spec. Thus, the corresponding computation prefix 〈H1(s
′
0), H1(s

′
1), ..., H1(s

′
n)〉

violates spec. Hence, we find a computation prefix in Srec that is not safe. This

contradicts with the assumption that from every state of Srec safe recovery to S with

respect to spec is guaranteed.

If (s′(n−1), s
′
n) is a fault transition then the corresponding fault transition

(H1(s
′
(n−1)), H1(s

′
n)) violates spec. Hence, we could find a state of p in the state

space Sp (i.e., H1(s
′
(n−1))) from where faults alone violate spec. This contradicts with

the assumption that we have already added safety to p.

Now, let cmp be a computation of p′ that starts from a state in S ′
rec and never

reaches S ′. Since the computations of p′ are infinite, there must exist a prefix

〈s′0, s′1, ..., s′n, s′0〉 of cmp that includes a cycle. Now, using function H1, we calculate

the computation prefix 〈s0, s1, ..., sn, s0〉 in the old state space Sp, where H1(s
′
i) = si

(0 ≤ i ≤ n). As a result, starting at s0 ∈ Srec, we find a computation prefix that

includes a cycle and never reaches S, which is a contradiction with the definition of

Srec. Therefore, from every state of S ′
rec safe recovery to S ′ with respect to spec is

guaranteed.

Lemma 6.11 From every state of S ′
rec, no computation prefix of p′[]f that ends in

S ′ violates the safety specification of the detector d (i.e., specd).

Proof. Let cmp be a computation of p′[]f that starts from a state in S ′
rec. If cmp

violates specd then there exists a computation prefix of cmp that violates spec. Let

〈s′0, s′1, ..., s′n〉 be the smallest such prefix. It follows that (s′(n−1), s
′
n) violates specd.

Thus, the transition (H2(s
′
(n−1)), H2(s

′
n)) violates specd; i.e., the detector d and the

program p interfere. By the construction of the transitions of p′, no transition of p′

interferes with the execution of d. Thus, the computation prefix cmp does not violate

specd.

Also, since we showed (cf. Theorem 6.1) that the fault-tolerance component d

is by itself F -tolerant, (H2(s
′
(n−1)), H2(s

′
n)) cannot be a fault transition that violates
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specd. Therefore, starting from every state in S ′
rec, every computations of p′[]f satisfy

specd.

Lemma 6.12 T ′ = S ′
rec∪{s′deadlock} is a valid fault-span for p′ in the new state space

Sp′ (i.e., H1(T
′) = Srec ∪ {sd}).

Proof. By construction, we have S ⊆ Srec. Hence, using function H1, we have

S ′ ⊆ S ′
rec. Otherwise, if there exists a state s′0 ∈ S ′ such that s′0 /∈ S ′

rec then we will

have a state s0 ∈ S, where H1(s
′
0) = s0, that is not in Srec, which is a contradiction

with S ⊆ Srec. Hence, we have S ′ ⊆ S ′
rec. Also, by assumption, the set Srec ∪ sdeadlock

is closed in the computations of p[]f . As a result, S ′
rec ∪ s′deadlock is closed in the

computations of p′[]f . It follows that T ′ is a valid fault-span since it is closed in p′[]f ,

and S ′ ⊆ T ′.

Using T ′, we present the following lemmas.

Lemma 6.13 p′[]f satisfies spec and specd from T ′.

Proof. Using Lemmas 6.10 and 6.11, p′[]f satisfies spec and specd from S ′
rec.

We only need to show that p′[]f satisfies spec and specd from s′deadlock, where

H1(s
′
deadlock) = sdeadlock. By the construction of pc, no transition originated at s′deadlock

violates spec or specd. Therefore, starting from every state at T ′, p′[]f satisfies spec

and specd.

Lemma 6.14 Every computation of p′[]f that starts from a state in T ′, where

H1(T
′) = Srec ∪ {sd}, contains a state in S ′.

Proof. Using Lemma 6.10, it follows that every computation of p′[]f that starts

from a state in S ′
rec, where H1(S

′
rec) = Srec, reaches a state in S ′. Moreover, by the

construction of p′, transitions of pc provide safe recovery from s′deadlock to a state in

S ′
rec, where H1(s

′
deadlock) = sdeadlock. Since safe recovery from every state of S ′

rec to S ′

is guaranteed, every computation of p′ that starts from a state in T ′ contains a state
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in S ′.

Theorem 6.15 p′ is masking f -tolerant for spec from S ′.

Proof. First, we show that S ′ is an invariant of p′. We consider a transition (s′0, s
′
1)

of p′ that starts in S ′ and ends outside S ′. Since s′0 ∈ S ′, by Observation 6.4, we have

H1(s
′
0) ∈ S. Also, from the construction of S ′, we have H1(s

′
1) /∈ S. As a result, we

find a transition (H1(s
′
0), H1(s

′
1)) of p that starts in S and ends outside S, which is a

contradiction with the closure of S in p. Thus, the execution of p′ is closed in S ′.

From Theorem 6.9, it follows that p′ satisfies spec from S ′. Thus, S ′ is an invariant

of p′. Therefore, using S ′ as an invariant and T ′ as a fault-span, and based on Lemmas

6.13, and 6.14, we have shown that p′ is masking f -tolerant for spec from S ′.

Theorem 6.2 (Soundness) The algorithm Add Component is sound.

Proof. To prove that our algorithm is sound, we have to show that the conditions

of the addition problem are satisfied.

1. H1(S
′) ⊆ S. (cf. Theorem 6.5).

2. H1(p
′|S ′) ⊆ p|H1(S

′). (cf. Theorem 6.9).

3. p′ is masking f -tolerant for spec from S ′. (cf. Theorem 6.15).

Theorem 6.3 The complexity of Add Component is polynomial in Sp′ .

Proof. The Add Component algorithm consists of three parts where we construct

the set of transitions pH1 , dH2 , and pc. Respectively, each one of these sets contains

a set of transition groups in the new state space Sp′ . The size of the new state space

is in the order of |Sp| · |Sd| (i.e., |Sp′| = |Sp| · |Sd|). As a result, the size of each

transition group cannot be more than |Sp′| · |Sp′| in Sp′ .

To construct pH1 , we process all groups of transitions that belong to pH1 . Thus,

in the worst case, we need to process m groups of transitions in the new state space

Sp′ , where m is the number of groups. As a result, the worst-case complexity for

116



constructing pH1 is in the order of m · |Sp′|2. The same reasoning holds for the

worst-case complexity for constructing dH2 and pc. Therefore, the complexity of the

Add Component algorithm is polynomial in the size of the Sp′ ; i.e., |Sp′|.

6.4.4 Token Ring Example Continued

Using Add Component, we add the detector specified in Section 6.4.2 to the token

ring program MTR introduced in Section 6.2.2. The resulting program, consisting of

the processes P0 · · ·P3 arranged in a ring, is masking fault-tolerant to process-restart

faults. We represent the transitions of P0 by the following actions.

MTR0 : ((x0 = 1) ∨ (x0 = ⊥)) ∧ (x3 = 1) −→ x0 := 0;

MTR′
0 : ((x0 = 0) ∨ (x0 = ⊥)) ∧ (x3 = 0) −→ x0 := 1;

D0 : (x0 = ⊥) ∧ (y0 = false) ∧ (y1 = true) −→ y0 := true;

C0 : (y0 = true) −→ x0 := 0; y0 := false;

The actions MTR0 and MTR′
0 are the same as the actions of the MTR program

presented in Section 6.2.2. The action D0 belongs to the sequential detector that

sets the witness predicate Z0 to true. The action C0 is the recovery action that P0

executes whenever the witness predicate (y0 = true) becomes true. Now, we present

the actions of P3.

MTR3 : ((x3 = 0) ∨ (x3 = ⊥)) ∧ (x2 = 1) −→ x3 := 1; y3 := false;

MTR′
3 : ((x3 = 1) ∨ (x3 = ⊥)) ∧ (x2 = 0) −→ x3 := 0; y3 := false;

D3 : (x3 = ⊥) ∧ (y3 = false) −→ y3 := true;

The action D3 belongs to the detector that sets Z3 to true. We present the actions

of P1 and P2 as the following parameterized actions (for i = 1, 2).

MTRi : ((xi = 0) ∨ (xi = ⊥)) ∧ (xi−1 = 1) −→ xi := 1; yi := false;

MTR′
i : ((xi = 1) ∨ (xi = ⊥)) ∧ (xi−1 = 0) −→ xi := 0; yi := false;

Di : (xi = ⊥) ∧ (yi = false) ∧ (yi+1 = true) −→ yi := true;
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The above program is masking fault-tolerant for the faults that corrupt one or

more processes. Note that when a process Pi (1 ≤ i ≤ 3) changes the value of xi

to a non-corrupted value, it falsifies Zi (i.e., yi). The falsification of Zi is important

during the recovery from sd = 〈⊥,⊥,⊥,⊥〉 in that when xi takes a non-corrupted

value, the detection predicate Xi no longer holds. Thus, if Zi remains true then the

detector di witnesses incorrectly, and as a result, violates the safety of the detector.

However, P0 does not need to falsify its witness predicate Z0 in actions MTR0 and

MTR′
0 because the action C0 has already falsified Z0 during a recovery from sd.

Remark. One could argue that we could have selected a different linear order d0 · · · d3

for the detector added to the token ring program. To address this issue, we note that

in the case of token ring program a detector with such linear arrangement would

interfere with the execution of the program (cf. Section 6.7 for details).

6.5 Example: Alternating Bit Protocol

In this section, we reuse the linear component used in the synthesis of the token

ring program presented in this chapter in the synthesis of a fault-tolerant alternating

bit protocol (ABP). The ABP program consists of a sender and a receiver processes

connected by a communication link that is subject to message loss faults. Using the

synthesis method presented in this chapter, we add pre-synthesized components to

synthesize an alternating bit protocol that is nonmasking fault-tolerant; i.e., when

faults occur the program guarantees recovery to its invariant. However, during recov-

ery, the nonmasking fault-tolerant protocol may violate its safety specification.

The alternating bit protocol (ABP). The fault-intolerant program consists of two

processes: a sender and a receiver. The sender reads from an infinite input stream of

data packets and sends the newly read packet to the receiver. The receiver copies each

received packet into an infinite output stream. When the sender sends a data packet,

it waits for an acknowledgement from the receiver before it sends the next packet.
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Also, when the receiver receives a new data packet, it sends an acknowledgment bit

back to the sender. A one-bit message header suffices to identify the data packet

currently being sent since at every moment there exists at most one unacknowledged

data packet. Using this identifier bit, the sender (respectively, the receiver) does not

need count the total number of packets sent (respectively, received).

Both processes have read/write access to a send channel and a receive channel.

The send channel is represented by an integer variable cs and the variable cr models

the receive channel. The domain of cs (respectively, cr) is {−1, 0, 1}, where 0 and

1 represent the value of the data bit in the channel and -1 represents an empty

channel. Since we are only concerned about the synchronization between the sender

and the receiver, we do not explicitly consider the actual data being sent. Thus, we

consider the contents of cs and cr to be a single binary digit. The sender process

has a Boolean variable bs that stores the data bit that identifies the data packet

currently being sent to the receiver. Correspondingly, the receiver process has a

Boolean variable br that represents the value that is supposed to be received. When

the sender process transmits a data packet, it waits for a confirmation from the

receiver before it sends the next packet. To represent the mode of operation, the

sender process uses a Boolean variable rs. The value of rs is 0 iff the sender is waiting

for an acknowledgement. Likewise, the receiver process uses a Boolean variable rr

such that the value of rr is 0 iff the receiver is waiting for a new packet.

We represent a state s of the ABP program by a 6-tuple 〈rs, bs, rr, br, cs, cr〉.

Thus, if we start from initial state 〈1, 1, 0, 0,−1,−1〉, then the sender process begins

to send a data bit 1 while the receiver waits to receive it. We represent the transitions

of the sender process in the fault-intolerant program ABP by the following actions.

Send0 : (rs = 1) −→ rs := 0; cs := bs;

Send1 : (cr 6= −1) −→ rs := 1; cr := −1; bs := (bs + 1) mod 2;

Using action Send0, the sender sends another packet to the receiver when it is not
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waiting for an acknowledgment. Thus, by setting rs to 0, the sender moves to the sate

where it waits for an acknowledgment from the receiver. If the receive channel is non-

empty (i.e., (cr 6= −1)) then the sender reads the receive channel and becomes ready

for sending the next packet. The actions of the receiver process in the fault-intolerant

program ABP are as follows:

Rec0 : (cs 6= −1) −→ cs := −1; rr := 1; br := (br + 1) mod 2;

Rec1 : (rr = 1) −→ rr := 0; cr := br;

The receiver reads the send channel cs when it is non-empty (cf. Action Rec0).

Then, the receiver toggles the value of br where it becomes ready to send an acknowl-

edgment to the receiver (in Action Rec1).

Read/Write restrictions. The sender can read/write rs, cs, bs, and cr, but it is not

allowed to read rr and br. The receiver is allowed to read/write rr, cs, br, and cr.

The receiver is not allowed to read rs and bs.

Faults. Faults can remove a data bit from either one of the communication channels

causing the loss of that data bit. Hence, we model faults by setting the value of cs

(respectively, cr) to -1.

F0 : (cs 6= −1) −→ cs := −1;

F1 : (cr 6= −1) −→ cr := −1;

We assume that the fault actions will be executed a finite number of times; i.e.,

eventually faults stop occurring.

Safety specification. The problem specification requires that the receiver receives

no duplicate packets.

Invariant. The state of the ABP program should satisfy the following conditions:

(i) If the receiver is ready to send an acknowledgement message or it has already sent

an acknowledge then the receive bit br and the send bit bs must be equal; (ii) If the
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sender is ready to send a new packet or it has already sent a new packet then the

bs and br must not be equal; (iii) It is always the case that either the send channel

cs is empty or it contains the sent bit bs; (iv) If both channels are empty then only

one of the processes (i.e., the sender or the receiver) should be waiting; (v) If one of

the channels is empty and the other one contains some data then both processes are

waiting. Hence, we specify the invariant of the ABP program, SABP , as follows:

SABP = {s | (((rr(s) = 1) ∨ (cr(s) 6= −1)) ⇒ (br(s) = bs(s))) ∧

(((rs(s) = 1) ∨ (cs(s) 6= −1)) ⇒ (br(s) 6= bs(s))) ∧ ((cs(s) = −1) ∨ (cs(s) = bs(s))) ∧

(((cs(s) = −1) ∧ (cr(s) = −1)) ⇒ ((rr(s) + rs(s)) = 1)) ∧

(((cs(s) 6= −1) ∧ (cr(s) = −1)) ⇒ ((rr(s) + rs(s)) = 0)) ∧

(((cs(s) = −1) ∧ (cr(s) 6= −1)) ⇒ ((rr(s) + rs(s)) = 0)) }

Fault-span. The state of the ABP program may be perturbed to the state predicate

TABP due to fault transitions, where

TABP = {s | ((cs(s) = −1) ∨ (cs(s) = bs(s))) ∧

(((cs(s) = −1) ∨ (cr(s) = −1)) ⇒ (((rr(s) + rs(s)) = 1) ∨ ((rr(s) + rs(s)) = 0)))}

The state predicate TABP includes states where (i) the send channel is empty or

it is equal to the sent bit bs, and (ii) if at least one of the channels is empty then at

least one of the processes is waiting.

Adding the actions of the high atomicity pseudo process. Faults may perturb

the program in the states where sender has sent a new packet and the receiver is

waiting for its arrival. As a result, the sent message is lost in the sender channel

(i.e., cs becomes -1) and the receiver is waiting for a lost message. Likewise, the

acknowledgement sent by the receiver might be lost in cr. Thus, the program may

reach states where both channels are empty and both processes are waiting. For

example, when the sent message is lost, the receiver is waiting for the lost message

and the sender is waiting for its acknowledgement. In such states the program takes
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no action; i.e., deadlock state. Since the processes are not allowed to read the global

state of the program, they cannot detect such global deadlock states. Using our

synthesis method, we use high atomicity processes to identify the following high

atomicity actions that are added to the program for recovery.

HAC0 : (rs = 0) ∧ (rr = 0) ∧ (bs = 1) ∧ (br = 0) ∧ (cs = −1) ∧ (cr = −1) −→ cs := 1;

HAC1 : (rs = 0) ∧ (rr = 0) ∧ (bs = 0) ∧ (br = 1) ∧ (cs = −1) ∧ (cr = −1) −→ cs := 0;

HAC2 : (rs = 0) ∧ (rr = 0) ∧ (bs = 1) ∧ (br = 1) ∧ (cs = −1) ∧ (cr = −1) −→ cr := 1;

HAC3 : (rs = 0) ∧ (rr = 0) ∧ (bs = 0) ∧ (br = 0) ∧ (cs = −1) ∧ (cr = −1) −→ cr := 0;

The guards of the above actions are global state predicates that we refine using

linear distributed detectors. Let Gi be the guard of the action HACi, where 0 ≤ i ≤ 3.

For example, we have G0 ≡ ((rs = 0)∧(rr = 0)∧(bs = 1)∧(br = 0)∧(cs = −1)∧(cr =

−1)). Corresponding to each global state predicate Gi, we use a distributed detector

with two elements dsi and dri, where dsi is the local detector installed in the sender

side and dri is the local detector installed in the receiver side. Next, we show how we

add a linear distributed detector for the detection of G0. We omit the presentation

of the refinement of G1, G2, and G3 as it is similar to the refinement of G0.

Adding fault-tolerance components. Due to read restriction the sender (respec-

tively, the receiver) cannot atomically detect G0. However, the sender can detect

a local condition LCs ≡ ((rs = 0) ∧ (bs = 1) ∧ (cs = −1)). Respectively, the re-

ceiver can detect a local condition LC ′
r ≡ ((rr = 0) ∧ (br = 0) ∧ (cr = −1)), where

G0 ≡ (LCs ∧ LC ′
r). Now, we instantiate the required distributed detector by reusing

the code of the pre-synthesized linear detectors presented in Section 6.3.

DAr0 : (LC ′
r) ∧ (y′

r = false) −→ y′
r := true;

DAs0 : (LCs) ∧ (ys = false) ∧ (y′
r = true) −→ ys := true;

The action DAs0 belongs to detector ds0 that is allowed to read the witness

predicate y′
r of the detector element dr0 in the receiver side. If the detector element
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dr0 detects its local predicate LC ′
r then it will set its witness predicate y′

r to true.

Then, if the condition LCs holds in the sender side then the detector element ds0

will detect the global state predicate G0 by setting its witness predicate ys to true.

Afterwards, the synthesis algorithm adds the following write action to the sender

process.

Cs0 : (ys = true) −→ cs := 1; ys := false;

The synthesis algorithm adds similar distributed detectors to ABP in order to

refine the global state predicates G1, G2, and G3. Given the local conditions LC ′
s ≡

((rs = 0) ∧ (bs = 0) ∧ (cs = −1)) and LCr ≡ ((rr = 0) ∧ (br = 1) ∧ (cr = −1)), we

have the following logical equivalences:

• G1 ≡ (LC ′
s ∧ LCr)

• G2 ≡ (LCs ∧ LCr)

• G3 ≡ (LC ′
s ∧ LC ′

r).

Corresponding to global detection predicates G1 · · ·G3, we respectively add the

following linear distributed detectors and also the necessary correcting action for

recovery to the invariant. Note that each added component has its own variables for

representing the witness predicates.

Detecting G1. This linear detector refines the guard of the action HAC1 added by

our synthesis algorithm.

DAr1 : (LCr) ∧ (yr = false) −→ yr := true;

DAs1 : (LC ′
s) ∧ (y′

s = false) ∧ (yr = true) −→ y′
s := true;

Correcting G1. After the detection of G1, the following write action takes place.

Cs1 : (y′
s = true) −→ cs := 0; y′

s := false;
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Detecting G2. We use the following linear detector to refine the guard of the action

HAC2.

DAr2 : (LCr) ∧ (ur = false) ∧ (us = true) −→ ur := true;

DAs2 : (LCs) ∧ (us = false) −→ us := true;

Correcting G2. The following action, composed with the receiver, recovers the state

of the ABP program to the invariant SABP after the detection of the global state

predicate G2.

Cr2 : (ur = true) −→ cr := 1; ur := false;

Detecting G3. To detect the global state predicate G3 (i.e., the guard of the high

atomicity action HAC3), we add the following detector to ABP.

DAr3 : (LC ′
r) ∧ (u′

r = false) ∧ (u′
s = true) −→ u′

r := true;

DAs3 : (LC ′
s) ∧ (u′

s = false) −→ u′
s := true;

Correcting G3. This action changes the state of the ABP program to a state in

SABP after the detection of G3.

Cr3 : (u′
r = true) −→ cr := 0; u′

r := false;

The fault-tolerant ABP program. Next, we present the actions of the sender

process in the resulting nonmasking fault-tolerant program.

Send′0 : (rs = 1) −→ rs := 0; cs := bs; cs := bs;

u′
s := false; us := false;

Send′1 : (cr 6= −1) −→ rs := 1; cr := −1; bs := (bs + 1) mod 2;

u′
s := false; us := false;

DAs0 : (LCs) ∧ (ys = false) ∧ (y′
r = true)

−→ ys := true;

Cs0 : (ys = true) −→ cs := 1; ys := false;
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DAs1 : (LC ′
s) ∧ (y′

s = false) ∧ (yr = true)

−→ y′
s := true;

Cs1 : (y′
s = true) −→ cs := 0; y′

s := false;

DAs2 : (LCs) ∧ (us = false)−→ us := true;

DAs3 : (LC ′
s) ∧ (u′

s = false)−→ u′
s := true;

The synthesis algorithms has added new assignments to the actions Send′
0 and

Send′
1 for the falsification of the witness predicates. For example, in action Send′

0,

when cs is assigned a value other than -1, the predicates LCs and LC ′
s no longer hold.

Thus, the witness predicates u′
s and us must be falsified. The actions of the receiver

in the synthesized fault-tolerant program are as follows:

Rec0 : (cs 6= −1) −→ cs := −1; rr := 1; br := (br + 1) mod 2;

yr := false; y′
r := false;

Rec1 : (rr = 1) −→ rr := 0; cr := br;

yr := false; y′
r := false;

DAr0 : (LC ′
r) ∧ (y′

r = false) −→ y′
r := true;

DAr1 : (LCr) ∧ (yr = false) −→ yr := true;

DAr2 : (LCr) ∧ (ur = false) ∧

(us = true) −→ ur := true;

Cr2 : (ur = true) −→ cr := 1; ur := false;

DAr3 : (LC ′
r) ∧ (u′

r = false) ∧

(u′
s = true) −→ u′

r := true;

Cr3 : (u′
r = true) −→ cr := 0; u′

r := false;

Observe that in actions Rec0 (respectively, Rec1), we falsify the witness predicate

yr and y′
r once the program changes the value of rr to 1 (respectively, cr to 0 or

1). This falsification is necessary since once the condition (rr = 1) holds, the predi-

cates LCr and LC ′
r no longer hold. Also, this example illustrates the case where we

simultaneously add multiple pre-synthesized components to a distributed program

to add fault-tolerance. We have verified the interference-freedom requirements using
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the SPIN model checker [36] to gain more confidence with the implementation of

our synthesis framework, FTSyn (see Appendix A for the Promela [37] code of this

example).

6.6 Adding Hierarchical Components

In this section, we show how we add components with hierarchical topology to a dif-

fusing computation program to provide recovery in the presence of faults. In earlier

sections, we showed how we apply the synthesis algorithm presented in this chapter

to programs where the underlying communication topology between processes is lin-

ear. In this section, we show how we add hierarchical pre-synthesized components

to distributed programs. Specifically, we add tree-like structured components to a

diffusing computation program where processes are arranged in an out-tree, where

the indegree of each node is at most one. A diffusing computation starts at the root

and propagates throughout the tree, and then, reflects back up to the root of the tree.

The fault-intolerant program is subject to faults that perturb the state of the diffus-

ing computation and the topology of the program (i.e., the parenting relationship

amongst processes).

This case study shows that the synthesis method presented in this chapter han-

dles pre-synthesized components (respectively, distributed programs) with different

topologies as we have already reused a particular linear component in the synthesis

of a token ring program and an alternating bit protocol in this chapter. Next, in

Subsection 6.6.1, we describe how we formally represent a hierarchical fault-tolerance

component. Subsequently in Subsection 6.6.2, we show how we automatically add a

hierarchical component to a diffusing computation program.
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6.6.1 Specifying Hierarchical Components

In this section, we describe the representation of hierarchical fault-tolerance compo-

nents (i.e., detectors and correctors). We focus on the representation of a detector

with a tree-like structure as a special case of hierarchical detectors. The hierarchical

detector d consists of n elements di (0 ≤ i < n), its specification specd (specified in

Subsection 6.3.1), its variables, and its invariant U . We introduce a relation ¹ on

the elements di that represents the parenting relation between the nodes of the tree;

e.g., i ¹ j means di is the parent of dj.

The element d0 is placed at the root of the tree and other elements of the detector

are placed in other nodes of the tree. Each node di has its own detection predicate Xi

and witness predicate Zi. The siblings of a node can detect their detection predicate

in parallel. However, the truth-value of the detection predicate of each node depends

on the truth-value of its children. In other words, node di can witness if all its children

have already witnessed.

Each element di, 0 ≤ i < n, of the detector has a Boolean variable yi that

represents its witness predicate; i.e., the witness predicate of each di, say Zi, is equal

to (yi = true). Also, the element di can read/write the y values of its children and its

parent (0 ≤ i < n). Moreover, each element di is allowed to read the variables that

Pi can read, where Pi is the process with which di is composed. Now, we present the

template action of the detector di as follows ((0 ≤ i, j, k < n) ∧ (j < k) ∧ (∀r : j ≤

r ≤ k : i ¹ r)):

DAi : (LCi) ∧ (yj ∧ · · · ∧ yk) ∧ (yi = false) −→ yi := true;

Using action DAi (0 ≤ i < n), each element di of the hierarchical detector

witnesses (i.e., sets the value of yi to true) whenever (i) the condition LCi be-

comes true, where LCi represents a local condition that di atomically checks (by

reading the variables of Pi), and (ii) its children dj, · · · , dk have already witnessed
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((0 ≤ j, k < n) ∧ (j < k)). The detection predicate Xi for element di is equal to

(LCi ∧ LCj ∧ · · · ∧ LCk). Therefore, d0 detects the global detection predicate

LC0 ∧ · · · ∧ LCn−1.

The above action is an abstract template that should be instantiated by the syn-

thesis algorithm during the synthesis of a specific program in such a way that the

program and the detector do not interfere. For automatic addition of nonmasking

fault-tolerance, the interference-freedom of the program and the detector requires

that (i) in the absence of faults, the program specification and the safety specification

of detectors are satisfied, and (ii) in the presence of faults, recovery is provided by

the composition of the program and the detectors.

During the detection, when di sets yi to true, its children have already set their y

values to true. Hence, we represent the invariant of the hierarchical detector by the

predicate U , where

U = {s : (∀i : (0 ≤ i < n) : (yi(s) ⇒ (∀j : i ¹ j : LCj))}

6.6.2 Diffusing Computation

In this section, we present the addition of a hierarchical pre-synthesized component

to a fault-intolerant diffusing computation. We have adapted the diffusing compu-

tation program from [38]. First, in Subsection 6.6.2.1, we give the specification of

the diffusing computation program. Then, in Subsection 6.6.2.2, we present the syn-

thesized nonmasking fault-tolerant program before the addition of the hierarchical

component, which includes high atomicity recovery actions. Finally, in Subsection

6.6.2.3, we show how we add pre-synthesized components to refine the high atomicity

actions added during synthesis.

6.6.2.1 Diffusing Computation Program

The diffusing computation (DC) program consists of four processes {P0, P1, P2, P3}

whose underlying communication is based on a tree topology. The process P0 is the
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root of the tree. Processes P1 and P2 are the children of P0 (i.e., (0 ¹ 1) ∧ (0 ¹ 2))

and P3 is the child of P2 (i.e., 2 ¹ 3).

Starting from a state where every process is green, P0 initiates a diffusing com-

putation throughout the tree by propagating the red color towards the leaves. The

leaves reflect the diffusing computation back to the root by coloring the nodes green.

Afterwards, when all processes become green again, the cycle of diffusing computation

repeats.

Each process Pj (0 ≤ j ≤ 3) has a variable cj that represents its color and whose

domain is {0, 1}, where 0 represents the red and 1 represents the green. Also, process

Pj has a Boolean variable snj that represents the session number of the diffusing

computation where Pj is currently participating. Thus, we use snj to distinguish

the case where Pj has not started to participate in the current diffusing computation

from the case where Pj has completed the current session of diffusing computation.

Moreover, each process has a variable parj that represents the parent of Pj. The

domain of parj is equal to {0, 1, 2, 3}. The value of parj identifies the node from

where there exists an edge to Pj in the out-tree. For example, since the parent of P0

is itself, we have par0 = 0.

Program actions. The actions of the process Pj (0 ≤ j < 4) are as follows:

DCj1 : (cj = 1) ∧ (parj = j) −→ cj := 0; snj = ¬snj ;

DCj2 : (cj = 1) ∧ (cparj = 0) ∧ (snj 6≡ snparj ) −→ cj := cparj ; snj = snparj ;

DCj3 : (cj = 0) ∧ (∀k :: (park = j) ⇒ (ck = 1 ∧ snj ≡ snk)) −→ cj := 1;

Read/write restrictions. Each process Pj is allowed to read/write the variables of

its children and its parent. For example, process P0 can read/write its local variables

and the local variables of P1 and P2. However, P0 is not allowed to read/write the

variables of P3. Also, P3 cannot read/write the variables of P0 and P1.

Invariant. In each session of diffusing computation, every process Pj meets one

of the following requirements: (i) Pj and Pparj
have both started participating in
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the current session of diffusing computation; (ii) Pj and Pparj
have both completed

the current session of diffusing computation; (iii) Pj has not started participating in

the current session whereas Pparj
has, and (iv) Pj has completed participating in the

current session whereas Pparj
has not. Hence, the invariant of the program contains

all state where SDC holds, where

SDC = (∀j : (0 ≤ j ≤ 3) : ((cj = cparj ∧ snj ≡ snparj ) ∨ (cj = 1 ∧ cparj = 0))) ∧

(par0 = 0 ∧ par1 = 0 ∧ par2 = 0 ∧ par3 = 2)

Faults. Fault transitions can perturb the values of cj and snj (0 ≤ j ≤ 3), and the

underlying communication topology of the program. We represent the fault transi-

tions by the following actions:

Fj1 : (true) −→ cj = 0|1;

Fj2 : (true) −→ snj = false|true;

F0 : (true) −→ par0 = 0|1|2;

The actions Fj1 and Fj2 represent the fault transitions that perturb a process Pj

whereas action F0 only affects P0. The class of faults F0 perturbs the parenting rela-

tionship by changing the value of par0 to one of the values {0, 1, 2}. We have included

fault-class F0 since it perturbs the DC program to states where we can demonstrate

the advantages of using pre-synthesized components in dealing with deadlock states.

6.6.2.2 Intermediate Nonmasking Program

Now, we present the intermediate nonmasking fault-tolerant program that includes

high atomicity recovery actions. We have synthesized this intermediate program using

our software framework FTSyn (cf. Chapter 8).

The faults may perturb the state of the DC program outside SDC where the

program may fall in a non-progress cycle or reach a deadlock state. For example,

faults F0 may perturb the program to states where the condition Tdeadlock ≡ ((c0 =

1) ∧ (c1 = 1) ∧ (c2 = 1) ∧ (c3 = 1)) ∧ (par0 6= 0) holds. The state predicate Tdeadlock
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represents states from where no program action is enabled; i.e., deadlock states. Now,

to add recovery from a state in Tdeadlock, FTSyn assigns a high atomicity process Phighj

to each process Pj (0 ≤ j < 4).

To illustrate our approach of adding hierarchical pre-synthesized detectors (re-

spectively, correctors), we only focus on one of the high atomicity recovery actions

added by process Phigh0 as the refinement of other high atomicity actions is simi-

lar. The actions of other high atomicity processes in the intermediate nonmasking

program are available in the Appendix A. The action HAC is as follows:

HAC : (c0 = 1) ∧ (c1 = 1) ∧ (c2 = 1) ∧ (c3 = 1) ∧ (sn0 = 1) ∧ ((par0 = 2) ∨ (par0 = 1)) ∧

((sn3 = 0) ∨ (sn1 = 0) ∨ (sn2 = 0)) −→ sn0 := 0;

The guard of HAC identifies a subset of Tdeadlock for which HAC provides recovery

to states from where recovery to SDC has been already established. The write action

performed by HAC is a local write operation in process P0, whereas the guard of

HAC is a global state predicate that should be refined in the distributed program.

Thus, we only need to add detectors for the refinement of the guard of HAC. In

the next subsection, we show how FTSyn uses the guard of HAC to automatically

specify the required detectors.

6.6.2.3 Adding Pre-synthesized Detectors

To refine the guard of HAC, the synthesis algorithm presented in this chater auto-

matically identifies the interface of the required component. The component interface

is a triple 〈X,R, i〉, where X is the detection predicate of the required component,

R is a relation that represents the topology of the required component, and i is the

index of the process that performs the local write action after the detection of X. For

example, for action HAC, X is equal to the state predicate X0 as we describe next

in this section, R is a set of pairs where each pair represents the existence of a com-

munication link between two processes, and i is equal to 0 since P0 should perform
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the local write action.

Using the interface of the required pre-synthesized component, the synthesis algo-

rithm queries an existing library of pre-synthesized components. At this step, we have

the option of supervising the synthesis algorithm in that we can observe the guard

of HAC and manually identify the required components. This manual intervention

helps in minimizing the number of components added to the program since each com-

ponent adds its associated variables to the program and expands the state space. For

example, in the case of action HAC, the synthesis algorithm automatically identifies

one component corresponding to each deadlock state in the set of states represented

by the guard of HAC, whereas by manual intervention, we observe that the only

variables that are not readable for P0 are c3 and sn3. Hence, we add two distributed

detectors d and d′ to simultaneously detect the predicates X0 and X ′
0, where

X0 ≡ ((c3 = 1) ∧ (c0 = 1) ∧ (c1 = 1) ∧ (c2 = 1) ∧ (sn0 = 1) ∧ ((par0 = 2) ∨ (par0 = 1)))

X ′
0 ≡ ((sn3 = 0) ∧ (c0 = 1) ∧ (c1 = 1) ∧ (c2 = 1) ∧ (sn0 = 1) ∧ ((par0 = 2) ∨ (par0 = 1)))

The pre-synthesized detector d (respectively, d′) includes four elements d0, d1, d2,

and d3 (respectively, d′
0, d

′
1, d

′
2, and d′

3), where di (respectively, d′
i) is composed with

Pi (0 ≤ i ≤ 3). Thus, the topologies of the distributed detectors d and d′ are similar

to the topology of the DC program. Also, the parenting relationship (respectively,

read/write restrictions) between d0, d1, d2, d3 (respectively, d′
0, d

′
1, d

′
2, and d′

3) follows

the parenting relationship (respectively, read/write restrictions) of P0, P1, P2, and P3.

The synthesis algorithm automatically instantiates an instance of the template

action presented in Section 6.6.1 with the appropriate local condition. The local

conditions are automatically identified based on the set of readable variables of each

process. For example, the part of X0 that is readable for detector d3 is identified

as LC3 ≡ ((c3 = 1) ∧ (c2 = 1)). Thus, the instantiation of the template action for

detector d3 results in the following action:
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D31 : (c3 = 1) ∧ (c2 = 1) ∧ (y3 = false) −→ y3 := true;

Likewise, the part of X ′
0 that is readable for detector d′

3 is automatically identified

as LC ′
3 ≡ ((sn3 = 0) ∧ (c2 = 1)). Hence, the action of d′

3 is as follows:

D′
31 : (sn3 = 0) ∧ (c2 = 1) ∧ (y′

3 = false) −→ y′
3 := true;

The detector d3 (respectively, d′
3) sets y3 (respectively, y′

3) to true if the local con-

dition LC3 (respectively, LC ′
3) holds and y3 (respectively, y′

3) is false. The predicate

Z3 ≡ (y3 = true) (respectively, Z ′
3 ≡ (y′

3 = true)) is the witness predicate of d3

(respectively, d′
3), and the predicate X3 ≡ LC3 (respectively, X ′

3 ≡ LC ′
3) constructs

the detection predicate of d3 (respectively, d′
3). Note that since d3 (respectively, d′

3)

is the leaf of the tree, it does not have any children to wait for before it witnesses.

Next, we present the actions of d2 and d′
2 (i.e., actions D21 and D′

21) as follows:

D21 : (y3 = true) ∧ (c2 = 1) ∧ (sn0 = 1) ∧ (c0 = 1) ∧((par0 = 2) ∨ (par0 = 1)) ∧ (y2 = false)

−→ y2 := true;

D′
21 : (y′

3 = true) ∧ (c2 = 1) ∧ (sn0 = 1) ∧ (c0 = 1) ∧((par0 = 2) ∨ (par0 = 1)) ∧ (y′
2 = false)

−→ y′
2 := true;

The local condition of the action D21 (i.e., LC2) is equal to (c2 = 1)∧(sn0 =

1) ∧ (c0 = 1)∧ ((par0 = 2) ∨ (par0 = 1)). Thus, the detection predicate of d2 is equal

to X2 ≡ (LC2 ∧ LC3) and its witness predicate Z2 is equal to (y2 = true). The local

condition of the action D′
21 (i.e., LC ′

2) is also equal to LC2. Hence, the detection

predicate of d′
2 is equal to X ′

2 ≡ (LC ′
2 ∧LC ′

3) and its witness predicate Z ′
2 is equal to

(y′
2 = true).

Likewise, the synthesis algorithm identifies the detection (respectively, the wit-

ness) predicate of d1 based on identifying LC1 ≡ (c1 = 1). We omit the details of the

actions of d1 as it is straightforward and similar to the actions of d2 and d3. The local
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condition LC0 of detector d0 is equal to (c1 = 1)∧LC2. Also, the local condition LC ′
0

of detector d′
0 is equal to (c1 = 1)∧LC ′

2. Thus, the actions of detectors d0 and d′
0 are

as follows:

D01 : (y1 = true) ∧ (y2 = true) ∧ (c1 = 1) ∧ LC2 ∧ (y0 = false) −→ y0 := true;

D′
01 : (y′

1 = true) ∧ (y′
2 = true) ∧ (c1 = 1) ∧ LC ′

2 ∧ (y′
0 = false) −→ y′

0 := true;

The truth-value of y0 witnesses the truth-value of X0 and y′
0 witnesses the truth-

value of X ′
0. Now, we add a recovery action that only reads the local variables of P0

and d0 and writes the local variables of P0. The recovery action is as follows:

Rec : (y0 = true) ∧ ((y′
0 = true) ∨ (sn1 = 0) ∨ (sn2 = 0)) −→ sn0 := 0; y0 := false; y′

0 := false;

y2 := false; y′
2 := false;

When the program executes the above recovery action, the predicates X0 and X2

(respectively, X ′
0 and X ′

2) no longer hold. Thus, the witness predicates of d0 and d2

(respectively, d′
0 and d′

2) must be falsified; i.e., y0 and y2 (respectively, y′
0 and y′

2)

should become false.

The composition of the DC program and the pre-synthesized detectors.

Now, we present the actions of the process P0 of the nonmasking DC program that

is a composition of the actions of the pre-synthesized detectors and the actions of

the processes in the intermediate fault-intolerant program. Since the actions of P1

and P2 are structurally similar to P0’s actions, we refer the interested reader to the

Appendix A for the actions of P1 and P2. Note that since no detection is done by

d1, the synthesized program does not have any new actions in process P1. Thus, the

actions of P1 remain similar to the fault-intolerant program. The actions of process

P0 composed with the actions of d0, d′
0, and the recovery action Rec are as follows:

DC01 : (c0 = 1) ∧ (par0 = 0) −→ c0 := 0;

y0 := false; y′
0 := false;

DC02 : (c0 = 1) ∧ (cpar0 = 0) ∧ (sn0 6≡ snpar0)
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−→ c0 := cpar0 ; sn0 = snpar0 ;

if ((c0 = 0) ∧ (y0 = true))

then y0 := false; y′
0 := false;

DC03 : (c0 = 0) ∧ (∀k :: (park = 0) ⇒ (ck = 1 ∧ sn0 ≡ snk))

−→ c0 := 1;

if (((y1 = false) ∨ (y2 = false)) ∧ (y0 = true))

then y0 := false;

if (((y′
1 = false) ∨ (y′

2 = false)) ∧ (y′
0 = true))

then y′
0 := false;

D01 : (y1 = true) ∧ (y2 = true) ∧ LC0 ∧ (y0 = false)

−→ y0 := true;

D′
01 : (y′

1 = true) ∧ (y′
2 = true) ∧ LC ′

0 ∧ (y′
0 = false)

−→ y′
0 := true;

Rec : (y0 = true) ∧ ((y′
0 = true) ∨ (sn1 = 0) ∨ (sn2 = 0))

−→sn0 := 0; y0 := false; y′
0 := false;

y2 := false; y′
2 := false;

The actions of process P0 are composed with the actions of detectors d0 and d′
0

(i.e., D01 and D′
01) and the recovery action Rec presented in this section. Observe

that the statement of actions DC01 and DC02 of P0 are composed with assignments

that falsify the witness predicates of the corresponding detectors. Such falsification of

the witness predicates is necessary so that program execution preserves the safety of

detectors. For example, when c0 becomes 0 the state predicate LC0 no longer holds.

Thus, the witness predicate y0 must be falsified to ensure the interference-freedom of

the program and the pres-synthesized detectors.

Interference-freedom. The interference-freedom requires the synthesized program

to provide recovery in the presence of faults, and satisfy the specification of the

DC program in the absence of faults. In the presence of faults, if faults perturb

the program outside the invariant SDC then the synthesized program satisfies the

135



requirements of nonmasking fault-tolerance; i.e., recovery to SDC is guaranteed. In

the absence of faults, the added detectors do not interfere with the program execution.

Thus, in the absence of faults, the above program satisfies the specification of diffusing

computation program and the safety of detectors.

We would like to note that when faults occur, fault transitions may directly violate

the safety specification of detectors; e.g., after d3 witnesses that (c3 = 1) holds,

faults may change the value of c3 to 0, and as a result, d3 witnesses incorrectly;

i.e., the safety of d3 will be violated by fault transitions. Since nonmasking fault-

tolerance only requires recovery to the invariant, the violation of safety does not

violate the nonmasking fault-tolerance property. Thus, the only requirement is that

the composition of the program and the pre-synthesized detectors provides recovery

in the presence of faults.

Although the synthesized nonmasking program is correct by construction, we ver-

ified the interference-freedom requirements of the above program in the SPIN model

checker to gain more confidence on the implementation of the framework FTSyn pre-

sented in Chapter 8. We refer the reader to the Appendix A for the source of the

Promela model.

6.7 Discussion

In this section, we address some of the questions raised by our synthesis method.

Specifically, we discuss the following issues: the fault-tolerance of the components,

the choice of detectors and correctors, and pre-synthesized components with non-

linear topologies.

Can the synthesis method deal with the faults that affect the fault-tolerance compo-

nents?

Yes. The added component may itself be perturbed by the fault to which fault-

tolerance is added. Hence, the added component must itself be fault-tolerant. For
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example, in our token ring program, we modeled the effect of the process restart on

the added component and ensured that the component is fault-tolerant to that fault

(cf. Theorem 6.1). For the fault-classes that are commonly used, e.g., process failure,

process restart, input corruption, Byzantine faults, such modeling is always possible.

For arbitrary fault-classes, however, some validation may be required to ensure that

the modeling is appropriate for that fault.

How does the choice of detectors and correctors help in the synthesis of fault-tolerant

programs?

While there are several approaches (e.g., [39]) that manually transform a fault-

intolerant program into a fault-tolerant program, we use detectors and correctors in

this chapter, based on their necessity and sufficiency for manual addition of fault-

tolerance [18]. The authors of [18] have also shown that detectors and correctors are

abstract enough to generalize other components (e.g., comparators and voters used

in replication-based approaches) for the design of fault-tolerant programs. Hence,

we expect that our synthesis method can benefit from the generality of detectors and

correctors in the automated synthesis of fault-tolerant programs as there is a potential

to provide a rich library of fault-tolerance components. Moreover, pre-synthesized

detectors provide the kind of abstraction by which we can integrate efficient existing

detections approaches (e.g., [40, 41]) in pre-synthesized fault-tolerance components.

Does the synthesis method support pre-synthesized components with non-linear topolo-

gies?

Yes. As we demonstrated in Sections 6.5 and 6.6.2, we have applied the synthesis

method of this chapter to add pre-synthesized fault-tolerance components with linear

and hierarchical topologies. These examples show the applicability of our synthe-

sis method for distributed programs (respectively, distributed fault-tolerance compo-

nents) with linear and hierarchical topologies.

In the token ring example, will the synthesis succeed if we select PSindex (1 ≤ index ≤
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3), instead of PS0, as the pseudo process that adds a high atomicity recovery transition

from the deadlock state sd = 〈⊥,⊥,⊥,⊥〉?

Yes. We argue that if we select a detector d with the following arrangement,

dindex−1, · · · , d0, d3, · · · , dindex, where index 6= 0, then the synthesis will succeed and

the detector d will not interfere with the token ring program. In this arrangement,

the element dindex−1 is allowed to read and write yindex−1. Every element dj, 0 ≤ j <

index − 1, is allowed to read yj and yj+1, and write yj. d3 is allowed to read d0 and

d3, and write d3. Elements dk, index ≤ k < 3, are allowed to read dk and dk+1, and

write dk.

Using the above arrangement, Zindex witnesses the detection predicate X ≡ ((x0 =

⊥) ∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥)), and afterwards, the PSindex adds a high

atomicity recovery action to the program. The proof of non-interference is similar to

the case where PS0 is selected as the pseudo process that adds the high atomicity

action.

In the token ring example, will the synthesis succeed if we add a sequential detector

with a different linear order d0 · · · d3, where Z3 witnesses for the detection predicate

X ≡ ((x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥))?

No. We show that if we use the above order then the Interfere algorithm returns

true as I1 becomes non-empty; i.e., the execution of the token ring program interferes

with the added pre-synthesized component. In a state s = 〈⊥,⊥, 0, 0〉, the elements

d0 and d1 of the linear detector witness their detection predicates X0 and X1, where

X0 ≡ (x0 = ⊥) and X1 ≡ ((x0 = ⊥)∧ (x1 = ⊥)). Now, if P0 executes and sets x0 to 1

then X1 no longer holds. As a result, the program reaches a state where d1 incorrectly

witnesses its detection predicate and violates the specification of the linear detector.
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6.8 Summary

In this chapter, we presented an approach for the synthesis of a fault-tolerant pro-

gram from its fault-intolerant version and pre-synthesized fault-tolerance components.

Specifically, we presented an algorithm for automatic specification of the required

fault-tolerance components during the synthesis. We also presented a sound algo-

rithm for automatic addition of pre-synthesized fault-tolerance components to a dis-

tributed program. Before adding a component, we verified the interference-freedom

of the composition of the program and the fault-tolerance component. Using our syn-

thesis algorithm, we showed how we could add masking fault-tolerance to a token-ring

program where all process might be corrupted. By contrast, previous work on auto-

matic addition of fault-tolerance to the token ring program assumed that at least one

process is not corrupted. Also, we demonstrated how we reuse the same component

used in the synthesis of the token ring program for the synthesis of an alternating

bit protocol that is nonmasking fault-tolerant to message loss faults. Moreover, we

showed that our synthesis method is applicable for adding pre-synthesized compo-

nents with different topologies (e.g., linear and hierarchical) where we added tree-like

components to a diffusing computation program.

139



Chapter 7

Automated Synthesis of

Multitolerance

In this chapter, we focus on automated synthesis of multitolerant programs. Such

automated synthesis has the advantage of generating fault-tolerant programs that (i)

tolerate multiple classes of faults, and (ii) are correct by construction. Automatic

synthesis of multitolerance is desirable as (i) today’s systems are often subject to

multiple classes of faults, and (ii) it is often undesirable or impractical to provide

the same level of fault-tolerance to each class of faults. Hence, these systems need

to tolerate multiple classes of faults, and (possibly) provide a different level of fault-

tolerance to each class. To characterize such systems, the notion of multitolerance

was introduced in [34]. The importance of such multitolerant systems can be easily

observed from the fact that several methods for designing multitolerant programs

as well as several instances of multitolerant programs can be readily found (e.g.,

[11, 12, 13, 34]) in the literature.

We focus on automated synthesis of high atomicity multitolerant programs in a

stepwise fashion. Specifically, we (i) present a sound and complete stepwise algorithm

for the case where we add nonmasking fault-tolerance to one class of faults and mask-

ing fault-tolerance to another class of faults, and (ii) present a sound and complete

140



stepwise algorithm for the case where we add failsafe fault-tolerance to one class of

faults and masking fault-tolerance to another class of faults. The complexity of these

algorithms is polynomial in the state space of the fault-intolerant program. For the

case where failsafe fault-tolerance is added to one fault-class and nonmasking fault-

tolerance is added to another fault-class, we find a somewhat surprising result. We

find that this problem is NP-complete. This result is surprising in that automating

the addition of failsafe and nonmasking fault-tolerance to the same class of faults

can be performed in polynomial time. However, addition of failsafe fault-tolerance

to one class of faults and nonmasking fault-tolerance to a different class of faults is

NP-complete.

In the rest of this chapter, we proceed as follows: In Section 7.1, we present the

formal definition of multitolerance and the problem of synthesizing a multitolerant

program from a fault-intolerant program. Subsequently, in Section 7.2, we recall

the relevant properties of algorithms in 2.7 that we use in automated addition of

multitolerance. In Section 7.3, we present a sound and complete algorithm for the

synthesis of multitolerant programs that provide nonmasking-masking multitolerance.

Then, in Section 7.4, we present a sound and complete algorithm for the synthesis

of multitolerant programs that provide failsafe-masking multitolerance. In Section

7.5, we present the NP-completeness proof for the case where failsafe-nonmasking

multitolerance is added to fault-intolerant programs. Finally, in Section 7.6, we make

concluding remarks and discuss future work.

7.1 Problem Statement

In this section, we formally define the problem of synthesizing multitolerant programs

from their fault-intolerant versions. Before defining the synthesis problem, we present

our definition of multitolerance; i.e., we identify what it means for a program to be

multitolerant in the presence of multiple classes of faults.
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As mentioned in Section 2.5, a failsafe/nonmasking/masking fault-tolerant

program guarantees to provide a desired level of fault-tolerance (i.e., fail-

safe/nonmasking/masking) in the presence of a specific class of faults. Now, we con-

sider the case where faults from multiple fault-classes, say f1 and f2, occur in a given

program computation.

There exist several possible choices in deciding the level of fault-tolerance that

should be provided in the presence of multiple fault-classes. One possibility is to

provide no guarantees when f1 and f2 occur in the same computation. With such a

definition of multitolerance, the program would provide fault-tolerance if faults from

f1 occur or if faults form f2 occur. However, no guarantees will be provided if both

faults occur simultaneously.

Another possibility is to require that the fault-tolerance provided for the case

where f1 and f2 occur simultaneously should be equal to the minimum level of fault-

tolerance provided when either f1 occurs or f2 occurs. For example, if masking fault-

tolerance is provided to f1 and failsafe fault-tolerance is provided to f2 then failsafe

fault-tolerance should be provided for the case where f1 and f2 occur simultaneously.

However, if nonmasking fault-tolerance is provided to f1 and failsafe fault-tolerance

is provided to f2 then no level of fault-tolerance will be guaranteed for the case where

f1 and f2 occur simultaneously. We note that this assumption is not required in our

proof of NP-completeness in Section 7.5.

In our definition, we follow the latter approach. The following table illustrates

the minimum level of fault-tolerance provided for different combinations of levels of

fault-tolerance provided to individual classes of faults.

Fault-Tolerance Failsafe Nonmasking Masking

Failsafe Failsafe Intolerant Failsafe

Nonmasking Intolerant Nonmasking Nonmasking

Masking Failsafe Nonmasking Masking

In a special case, consider the situation where failsafe fault-tolerance is provided
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to both f1 and f2. From the above description, failsafe fault-tolerance should be

provided for the fault class f1 ∪ f2. By taking the union of all the fault-classes

for which failsafe fault-tolerance is provided, we get one fault-class, say ffailsafe, for

which failsafe fault-tolerance needs to be added. Likewise, we obtain the fault-class

fnonmasking (respectively, fmasking) for which nonmasking (respectively, masking) fault-

tolerance is provided.

Now, given (the transitions of) a fault-intolerant program, p, its invariant, S, its

specification, spec, and a set of distinct classes of faults ffailsafe, fnonmasking, and

fmasking, we define what it means for a synthesized program p′, with invariant S ′, to

be multitolerant by considering how p′ behaves when (i) no faults occur; (ii) only one

class of faults happens, and (iii) multiple classes of faults happen.

Definition. Program p′ is multitolerant to ffailsafe, fnonmasking, and fmasking from

S ′ for spec iff (if and only if) the following conditions hold:

1. p′ satisfies spec from S ′ in the absence of faults.

2. p′ is masking fmasking-tolerant from S ′ for spec.

3. p′ is failsafe (ffailsafe ∪ fmasking)-tolerant from S ′ for spec.

4. p′ is nonmasking (fnonmasking ∪ fmasking)-tolerant from S ′ for spec.

Remark. Since every program is failsafe/nonmasking/masking fault-tolerant to a

class of faults whose set of transitions is empty, the above definition generalizes the

cases where one of the classes of faults is not specified (e.g., fmasking = {}).

Now, using the definition of multitolerant programs, we identify the requirements

of the problem of synthesizing a multitolerant program, p′, from its fault-intolerant

version, p. The problem statement is motivated by the goal of simply adding multi-

tolerance and introducing no new behaviors in the absence of faults. This problem

statement is the natural extension to the problem statement in Section 2.6 where

fault-tolerance is added to a single class of faults.
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Since we require p′ to behave similar to p in the absence of faults, we stipulate the

following conditions: First, we require S ′ to be a subset of S (i.e., S ′ ⊆ S). Otherwise,

if there exists a state s ∈ S ′ where s /∈ S then, in the absence of faults, p′ can reach s

and create new computations that do not belong to p. Thus, p′ will include new ways

of satisfying spec from s in the absence of faults. Second, we require (p′|S ′) ⊆ (p|S ′).

If p′|S ′ includes a transition that does not belong to p|S ′ then p′ can include new

ways for satisfying spec in the absence of faults. Thus, the problem of multitolerance

synthesis is as follows:

The Multitolerance Synthesis Problem

Given p, S, spec, ffailsafe, fnonmasking, and fmasking

Identify p′ and S ′ such that

S ′ ⊆ S,

p′|S ′ ⊆ p|S ′, and

p′ is multitolerant to ffailsafe, fnonmasking, and fmasking from S ′ for spec.

We state the corresponding decision problem as follows:

The Decision Problem

Given p, S, spec, ffailsafe, fnonmasking, and fmasking:

Does there exist a program p′, with its invariant S ′ that satisfies

the requirements of the synthesis problem?

7.2 Addition of Fault-Tolerance to One Fault-

Class

In the synthesis of multitolerant programs, we reuse algorithms Add Failsafe,

Add Nonmasking, and Add Masking, presented by Kulkarni and Arora [1] (cf. Section

144



2.7). These algorithms respectively add failsafe/nonmasking/masking fault-tolerance

to a single class of faults. Hence, we recall the relevant properties of these algorithms

in this section.

The algorithms represented in Section 2.7 take a program p, its invariant S, its

specification spec, a class of faults f , and synthesize an f -tolerant program p′ (if any)

with the invariant S ′. The synthesized program p′ and its invariant S ′ satisfy the

following requirements: (i) S ′ ⊆ S; (ii) p′|S ′ ⊆ p|S ′, and (iii) p′ is failsafe (respectively,

nonmasking or masking) f -tolerant from S ′ for spec.

The invariant S ′, calculated by Add Failsafe (respectively, Add Masking), has the

property of being the largest such possible invariant for any failsafe (respectively,

masking) program obtained by adding fault-tolerance to the given fault-intolerant

program. In other words, if there exists a failsafe fault-tolerant program p′′, with

invariant S ′′ that satisfies the above requirements for adding fault-tolerance then

S ′′ ⊆ S ′. Also, if no sequence of fault transitions can violate the safety of specification

from any state inside S then Add Failsafe (cf. Section 2.7) will not change the invariant

of the fault-intolerant program. Hence, we make the following observations:

Observation 7.1. Let the input for Add Failsafe be p, S, spec and f . Let the output

of Add Failsafe be fault-tolerant program p′ and invariant S ′. If any program p′′ with

invariant S ′′ satisfies (i) S ′′ ⊆ S; (ii) p′′|S ′′ ⊆ p|S ′′, and (iii) p′′ is failsafe f -tolerant

from S ′ for spec then S ′′ ⊆ S ′.

Observation 7.2. Let the input for Add Failsafe be p, S, spec and f . Let the output

of Add Failsafe be fault-tolerant program p′ and invariant S ′. Unless there exists states

in S from where a sequence of f transitions alone violates safety, S ′=S.

Likewise, the f -span of the masking f -tolerant program, say T ′, synthesized by

the algorithm Add Masking (cf. Section 2.7) is the largest possible f -span. Thus, we

make the following observation:

Observation 7.3. Let the input for Add Masking be p, S, spec and f . Let the
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output of Add Masking be fault-tolerant program p′, invariant S ′, and fault-span T ′.

If any program p′′ with invariant S ′′ satisfies (i) S ′′ ⊆ S; (ii) p′′|S ′′ ⊆ p|S ′′, (iii) p′′ is

masking f -tolerant from S ′ for spec, and (iv) T ′′ is the fault-span used for verifying

the masking fault-tolerance of p′′ then S ′′ ⊆ S ′ and T ′′ ⊆ T ′.

The algorithm Add Nonmasking only adds recovery transitions from states outside

the invariant S to S. Thus, we make the following observations:

Observation 7.4. Add Nonmasking does not add or remove any state of S.

Observation 7.5. Add Nonmasking does not add or remove any transition of p|S.

Based on the Observations 7.1- 7.5, Kulkarni and Arora [1] show that the algo-

rithms Add Failsafe, Add Nonmasking, and Add Masking are sound and complete, i.e.,

the output of these algorithms satisfy the requirements for adding fault-tolerance to

a single class of faults and these algorithms can find a fault-tolerant program if one

exists.

Theorem 7.6. The algorithms Add Failsafe, Add Nonmasking, and Add Masking are

sound and complete.

7.3 Nonmasking-Masking Multitolerance

In this section, we present an algorithm for stepwise synthesis of multitolerant pro-

grams that are subject to two classes of faults fnonmasking and fmasking for which

respectively nonmasking and masking fault-tolerance is required. We also show that

our synthesis algorithm is sound and complete.

Given a program p, with its invariant S, its specification spec, our goal is to

synthesize a program p′, with invariant S ′ that is multitolerant to fnonmasking and

fmasking. By definition, p′ must be masking fmasking-tolerant. In the presence of

both fnonmasking and fmasking (i.e., fnonmasking ∪fmasking), p′ must provide nonmasking

fnonmasking ∪ fmasking-tolerance.

We proceed as follows: Using the algorithm Add Masking, we synthesize a masking
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fmasking-tolerant program p1, with invariant S ′, and fault-span Tmasking. Now, since

program p1 is masking fmasking-tolerant, it provides safe recovery to its invariant, S ′,

from every state in (Tmasking−S ′). Thus, in the presence of fnonmasking∪fmasking, if p1 is

perturbed to (Tmasking−S ′) then p1 will satisfy the requirements of nonmasking fault-

tolerance (i.e., recovery to S ′). However, if fnonmasking∪fmasking transitions perturb p1

to states s, where s /∈ Tmasking, then recovery must be added from those states. Based

on the Observations 7.4 and 7.5, it suffices to add recovery to Tmasking as provided

recovery by p1 from Tmasking to S ′ can be reused even after adding nonmasking fault-

tolerance. Thus, the synthesis algorithm Add Nonmasking Masking is as shown in

Figure 7.1.Add Nonmasking Masking(p: transitions, fnonmasking ; fmasking : fault,S: state predicate, spec: safety speci�cation)f p1; S0; Tmasking := Add Masking(p; fmasking; S; spec);if (S0=fg) declare no multitolerant program p0 exists;return ;; ;;p0; T 0 := Add Nonmasking(p1; fnonmasking [ fmasking ; Tmasking ; spec);return p0; S0;g
Figure 7.1: Synthesizing nonmasking-masking multitolerance.

Now, in Theorem 7.7, we show the soundness of Add Nonmasking Masking, i.e.,

we show that the output of Add Nonmasking Masking satisfies the requirements of the

problem statement in Section 7.1. Subsequently, in Theorem 7.8, we show the com-

pleteness of Add Nonmasking Masking, i.e., we show that if a multitolerant program

can be designed for the given fault-intolerant program then Add Nonmasking Masking

will not declare failure.

Theorem 7.7. The algorithm Add Nonmasking Masking is sound.

Proof. Based on the soundness of Add Masking (cf. Theorem 7.6), S ′ ⊆ S.

Also, using the soundness of Add Masking, we have p1|S ′ ⊆ p|S ′. In addition, based

on the Observation 7.5, we have p1|S ′ = p′|S ′. As a result, we have p′|S ′ ⊆ p|S ′.
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Now, we show that p′ is multitolerant to fnonmasking and fmasking from S ′ for spec:

1. Absence of faults. From the soundness of Add Masking, it follows that p1

satisfies spec from S ′ in the absence of faults. Since Add Nonmasking does

not add (respectively, remove) any transitions to (respectively, from) p1|S ′ (cf.

Observation 7.5), it follows that p′ satisfies spec from S ′.

2. Masking fmasking-tolerance. From the soundness of Add Masking, p1 is mask-

ing fmasking-tolerant from S ′ for spec. Also, based on the Observation 7.4 and

7.5, Add Nonmasking preserves masking fmasking-tolerance property of p1 since

p1|Tmasking = p′|Tmasking. Therefore, p′ is masking fmasking-tolerant from S ′ for

spec.

3. Nonmasking (fnonmasking ∪ fmasking)-tolerance. From the soundness of

Add Nonmasking, we know that p′ is nonmasking (fnonmasking ∪ fmasking)-

tolerant from Tmasking for spec. Also, based on the Observation 7.4 and

7.5, Add Nonmasking preserves masking fmasking-tolerance property of p1 since

p1|Tmasking = p′|Tmasking. Thus, recovery from Tmasking to S ′ is guaran-

teed in the presence of fnonmasking ∪ fmasking. Therefore, p′ is nonmasking

(fnonmasking ∪ fmasking)-tolerant from S ′ for spec.

Based on the above discussion, it follows that p′ is multitolerant to fnonmasking and

fmasking from S ′ for spec. Therefore, Add Nonmasking Masking is sound.

Theorem 7.8. The algorithm Add Nonmasking Masking is complete.

Proof. Add Nonmasking Masking declares that a multitolerant program does not

exist only when Add Masking does not find a masking fmasking-tolerant program. Since

the synthesized program must be masking fmasking-tolerant, from the completeness of

Add Masking, completeness of Add Nonmasking Masking follows.
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7.4 Failsafe-Masking Multitolerance

In this section, we investigate the stepwise synthesis of programs that are multitol-

erant to two classes of faults ffailsafe and fmasking for which we respectively require

failsafe and masking fault-tolerance. We present a sound and complete algorithm for

synthesizing failsafe-masking multitolerant programs.

Let p be the input fault-intolerant program with its invariant S, its specification

spec, and p′ be the synthesized multitolerant program with its invariant S ′. Since

the multitolerant program p′ must maintain safety of spec from every reachable state

in the computations of p′[](ffailsafe ∪ fmasking), p′ must not reach a state from where

safety is violated by a sequence of ffailsafe ∪ fmasking transitions. Hence, we calculate

a set of states, say ms (cf. Figure 7.2), from where safety of spec is violated by a

sequence of transitions of ffailsafe ∪ fmasking. Also, p′ must not execute transitions

that take p′ to a state in ms. Hence, we define mt to include these transitions as well

as the transitions that violate safety of spec.

Now, since p′ should be masking fmasking-tolerant, we use the algorithm

Add Masking to synthesize a program p1 given the input parameters p−mt, fmasking,

S−ms, and mt. We only consider faults fmasking because p1 need not be masking

fault-tolerant to ffailsafe. Since a multitolerant program must not reach a state of

ms, we use the state predicate S−ms as the input invariant to Add Masking. Finally,

we use mt transitions in place of the spec parameter (i.e., the fourth parameter of

Add Masking). Since Add Masking treats mt as a set of safety-violating transitions,

it does not include them in the synthesized program p1. Thus, starting from a state

in S ′, a computation of p1[]fmasking does not reach a state in ms. As a result, if

Tmasking contains a state s in ms, s can be removed while preserving the masking

fmasking-tolerance property of p1. Hence, we make the following observation:

Observation 7.9. In the output of the algorithm Add Masking (cf. Figure 7.2),

removing ms states from Tmasking preserves masking fmasking-tolerance property of
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p1.

Now, if faults ffailsafe ∪ fmasking perturb p1 to a state s, where s /∈ Tmasking then

our synthesis algorithm will have to ensure that safety is maintained. To achieve this

goal, we add failsafe (ffailsafe ∪ fmasking)-tolerance to p1 from (Tmasking−ms) using

the algorithm Add Failsafe.Add Failsafe Masking(p: transitions, ffailsafe; fmasking : fault, S: state predicate,spec: safety speci�cation)f ms := fs0 : 9s1; s2; :::sn : (8j : 0�j<n : (sj ; s(j+1)) 2 (ffailsafe [ fmasking)) ^(s(n�1); sn) violates spec g;mt := f(s0; s1) : ((s12ms) _ (s0; s1) violates spec) g;p1; S0; Tmasking := Add Masking(p�mt; fmasking ; S�ms;mt);if (S0=fg) declare no multitolerant program p0 exists;return ;; ;;p0; T 0 := Add Failsafe(p1; ffailsafe [ fmasking ; Tmasking�ms;mt);return p0; S0;
Figure 7.2: Synthesizing failsafe-masking multitolerance.

The algorithm Add Failsafe takes the program p1, faults ffailsafe ∪ fmasking, the

state predicate (Tmasking−ms), and the set of mt transitions as the set of transitions

that the multitolerant program is not allowed to execute. Since the input invariant

to Add Failsafe (i.e., (Tmasking −ms)) has no ms state, based on the Observation

7.2, the algorithm Add Failsafe does not remove any state of (Tmasking−ms). Also,

Add Failsafe does not remove any transition of p1|(Tmasking −ms). Thus, we have

(p′|(Tmasking−ms)) = (p1|(Tmasking−ms)) and p′|S ′ = p1|S ′.

Theorem 7.10. The algorithm Add Failsafe Masking is sound.

Proof. Using the soundness of Add Masking, we have S ′ ⊆ (S−ms), and as a result,

S ′ ⊆ S. Based on the Observation 7.2, it follows that Add Failsafe preserves S ′ ⊆ S.

Also, from the soundness of Add Masking, it follows that p1|S ′ ⊆ p|S ′. Using the

Observation 7.9, we have p′|S ′ ⊆ p|S ′.

Now, we show that p′ (cf. Figure 7.2) is indeed multitolerant to ffailsafe and
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fmasking from S ′ for spec.

1. Absence of faults. From the soundness of Add Masking (cf. Theorem 7.6),

it follows that p1 satisfies spec from S ′ in the absence of faults. Thus, using

Observations 7.2 and 7.9, it follows that p′ satisfies spec from S ′ in the absence

of faults.

2. Masking fmasking-tolerance. Based on the soundness of Add Masking, p1 is

masking fmasking-tolerant from S ′ for spec. Also, using the Observations 7.2

and 7.9, it follows that p′ is masking fmasking-tolerant from S ′ for spec.

3. Failsafe (ffailsafe ∪ fmasking)-tolerance. From the soundness of Add Failsafe,

it follows that p′ is failsafe (ffailsafe ∪ fmasking)-tolerant from T ′ for spec. Us-

ing Observation 7.2 and 7.9, since S ′ ⊆ (Tmasking−ms), no ffailsafe ∪ fmasking

transition can directly violate safety of spec from S ′. Also, since (p′|S ′) ⊆

(p′|(Tmasking−ms)), p′|S ′ does not include any mt transitions. Thus, p′ is fail-

safe (ffailsafe ∪ fmasking)-tolerant from S ′ for spec.

Based on the above discussion, it follows that p′ is multitolerant to ffailsafe and

fmasking from S ′ for spec.

Now, we present the completeness proof for Add Masking algorithm.

Theorem 7.11. The algorithm Add Failsafe Masking is complete.

Proof. If there exists a program p′′, with invariant S ′′, and fault-span T ′′ that is

multitolerant to ffailsafe and fmasking then p′′ must be masking fmasking-tolerant from

S ′′ for spec. Thus, there must exist a program synthesized from p that is masking

fault-tolerant to fmasking faults. Also, since p′′ is multitolerant, it must maintain the

safety of spec in the presence of ffailsafe and fmasking. Thus, we have T ′′ ∩ ms = ∅

and p′′|T ′′ ∩mt = ∅. Now, the completeness of Add Failsafe Masking follows from the

completeness of Add Masking and Add Failsafe.

151



7.5 Failsafe-Nonmasking-Masking Multitolerance

In this section, we show that, in general, the problem of synthesizing multitolerant

programs from their fault-intolerant version is NP-complete. Towards this end, in

Section 7.5.1, we show that the problem of synthesizing multitolerant programs from

their fault-intolerant version is in NP by designing a non-deterministic polynomial al-

gorithm. Afterwards, in Section 7.5.2, we present a mapping between a given instance

of the 3-SAT problem and an instance of the (decision) problem of synthesizing multi-

tolerance. Then, in Section 7.5.3, we show that the given 3-SAT instance is satisfiable

iff the answer to the decision problem is affirmative; i.e., there exists a multitoler-

ant program synthesized from the instance of the decision problem of multitolerance

synthesis.

7.5.1 Non-Deterministic Synthesis Algorithm

In this section, we first identify the difficulties of adding multitolerance to three

distinct classes of faults ffailsafe, fnonmasking, and fmasking. Then, we present a non-

deterministic solution for adding multitolerance to fault-intolerant programs.

For a program p that is subject to three classes of faults ffailsafe, fnonmasking, and

fmasking, consider the cases where there exists a state s such that (i) s is reachable in

the computations of p[](ffailsafe ∪ fmasking) from invariant, (ii) s is reachable in the

computations of p[](fnonmasking ∪ fmasking) from invariant, and (iii) no safe recovery is

possible from s to the invariant.

In such cases, we have the following options: (i) ensure that s is unreachable

in the computations of p[](ffailsafe ∪ fmasking) and add a recovery transition (that

violates safety) from s to the invariant, or (ii) ensure that s is unreachable in the

computations of p[](fnonmasking ∪ fmasking) and leave s as a deadlock state. Moreover,

the choice made for this state affects other similar states. Hence, one needs to explore

all possible choices for each such state s, and as a result, brute-force exploration of
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these options requires exponential time in the state space.

Now, given a program p, with its invariant S, its specification spec, and three

classes of faults ffailsafe, fnonmasking, and fmasking, we present the non-deterministic

algorithm Add Multitolerance. In our non-deterministic algorithm, first, we guess a

program p′, its invariant S ′, and three fault-spans Tfailsafe, Tnonmasking, and Tmasking.

Then, we verify a set of conditions that ensure the multitolerance property of p′. We

have shown our algorithm in Figure 7.3.

Add Multitolerance (p: transitions, ffailsafe, fnonmasking , fmasking: fault, S: state predicate,
spec: safety specification)

{
ms := {s0 : ∃s1, s2, ...sn : (∀j : 0≤j<n : (sj , s(j+1)) ∈ (ffailsafe ∪ fmasking)) ∧

(s(n−1), sn) violates spec }; (1)
mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) }; (2)

Guess p′, S′, Tfailsafe, Tnonmasking, Tmasking ; (3)
Verify the following conditions:

S′ ⊆ S; S′ 6= {}; S′ ⊆ Tfailsafe; S′ ⊆ Tnonmasking ; S′ ⊆ Tmasking ; (4)
(∀s0 : s0 ∈ S′ : (∃s1 :: (s0, s1) ∈ p′)); (5)
p′|S′ ⊆ p|S′; S′ is closed in p′; (6)

Tmasking is closed in p′[]fmasking ; (7)
Tmasking ∩ ms = ∅; (p′|Tmasking) ∩ mt = ∅; (8)
(∀s0 : s0 ∈ Tmasking : (∃s1 :: (s0, s1) ∈ p′)); (p′|(Tmasking−S′)) is acyclic; (9)

Tfailsafe is closed in p′[](ffailsafe ∪ fmasking); (10)
Tfailsafe ∩ ms = ∅; (p′|Tfailsafe) ∩ mt = ∅; (11)

Tnonmasking is closed in p′[](fnonmasking ∪ fmasking); (12)
(∀s0 : s0 ∈ Tnonmasking : (∃s1 :: (s0, s1) ∈ p′)); (p′|(Tnonmasking−S′)) is acyclic; (13)

}

Figure 7.3: A non-deterministic polynomial algorithm for synthesizing multitolerance.

Theorem 7.12 The algorithm Add Multitolerance is sound and complete.

Since this algorithm simply verifies the conditions needed for multitolerance in

polynomial time in the state space of the program, the proof is straightforward.

Theorem 7.13 The problem of synthesizing multitolerant programs from their fault-

intolerant versions is in NP.
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7.5.2 Mapping 3-SAT to Multitolerance

In this section, we give an algorithm for polynomial-time mapping of any given in-

stance of the 3-SAT problem into an instance of the decision problem defined in Sec-

tion 7.1. The instance of the decision problem of synthesizing multitolerance consists

of the fault-intolerant program, p, its invariant, S, its specification, and three classes

of faults ffailsafe, fnonmasking, and fmasking that perturb p. The problem statement for

the 3-SAT problem is as follows:

3-SAT problem.

Given is a set of propositional variables, a1, a2, ..., an, and a Boolean formula c =

c1 ∧ c2 ∧ ... ∧ cM , where each cj is a disjunction of exactly three literals.

Does there exist an assignment of truth values to a1, a2, ..., an such that c is satisfi-

able?

Next, we identify each entity of the instance of the problem of multitolerance

synthesis, based on the given instance of the 3-SAT formula.

The state space and the invariant of the fault-intolerant program, p. The

invariant, S, of the fault-intolerant program, p, includes only one state, say s. Based

on the propositional variables and disjunctions of the given 3-SAT instance, we include

additional states outside the invariant. Specifically, for each propositional variable ai,

we introduce the following states (cf. Figure 7.4):

• xi, x
′
i, yi, vi

And, for each disjunction cj = (ai ∨ ¬ak ∨ ar), where 1 ≤ i ≤ n, 1 ≤ k ≤ n, and

1 ≤ r ≤ n, we introduce a state zj outside the invariant (1 ≤ j ≤ M).

The transitions of the fault-intolerant program. The only transition in the

fault-intolerant program is a self-loop (s, s).
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Figure 7.4: The states and the transitions corresponding to the propositional variables in
the 3-SAT formula.

The transitions of ffailsafe. The transitions of ffailsafe can perturb the program

from xi to vi. Thus, the class of faults ffailsafe is equal to the set of transitions

{(xi, vi) : 1 ≤ i ≤ n}.

The transitions of fnonmasking. The transitions of fnonmasking can perturb the

program from x′
i to vi. Thus, we have fnonmasking = {(x′

i, vi) : 1 ≤ i ≤ n}.

The transitions of fmasking. The transitions of fmasking can take the program from

s to yi. Also, for each disjunction cj, we introduce a fault transition that perturbs

the program from state s to state zj (1 ≤ j ≤ M). Thus, the class of faults fmasking

is equal to the set of transitions {(s, yi) : 1 ≤ i ≤ n} ∪ {(s, zj) : 1 ≤ j ≤ M}.

The safety specification of the fault-intolerant program, p. None of the

fault transitions, namely ffailsafe, fnonmasking, and fmasking identified above directly

violate safety. In addition, for each propositional variable ai, the following transitions

do not violate safety (cf. Figure 7.4):

• (yi, xi), (xi, s), (yi, x
′
i), (x

′
i, s)

And, for each disjunction cj = ai∨¬ak∨ar, the following transitions do not violate

safety:

• (zj, xi), (zj, x
′
k), (zj, xr)
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All transitions except those identified above violate safety of specification. Also,

observe that the transition (vi, s), shown in Figure 7.4, violates safety.

7.5.3 Reduction From 3-SAT

In this section, we show that the given instance of 3-SAT is satisfiable iff multitoler-

ance can be added to the problem instance identified in Section 7.5.2. Specifically, in

Lemma 7.14, we show that if the given instance of the 3-SAT formula is satisfiable

then there exists a multitolerant program that solves the instance of the multitoler-

ance synthesis problem identified in Section 7.5.2. Then, in Lemma 7.15, we show

that if there exists a multitolerant program that solves the instance of the multitol-

erance synthesis problem, identified in Section 7.5.2, then the given 3-SAT formula is

satisfiable.

Lemma 7.14 If the given 3-SAT formula is satisfiable then there exists a multitol-

erant program that solves the instance of the addition problem identified in Section

7.5.2.

Proof. Since the 3-SAT formula is satisfiable, there exists an assignment of truth

values to the propositional variables ai, 1 ≤ i ≤ n, such that each cj, 1 ≤ j ≤ M ,

is true. Now, we identify a multitolerant program, p′, that is obtained by adding

multitolerance to the fault-intolerant program p identified in Section 7.5.2.

The invariant of p′ is the same as the invariant of p (i.e., {s}). We derive the

transitions of the multitolerant program p′ as follows. (As an illustration, we have

shown the partial structure of p′ where ai = true, ak = false, and ar = true (1 ≤

i, k, r ≤ n) in Figure 7.5.)

• For each propositional variable ai, 1 ≤ i ≤ n, if ai is true then we will include

the transitions (yi, xi) and (xi, s). Thus, in the presence of fmasking alone, p′

provides safe recovery to s through xi.
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• For each propositional variable ai, 1 ≤ i ≤ n, if ai is false then we will include

(yi, x
′
i) and (x′

i, s) to provide safe recovery to the invariant. In this case, since

state vi can be reached from x′
i by faults fnonmasking, we include transition

(vi, s) so that in the presence of fmasking and fnonmasking program p′ provides

nonmasking fault-tolerance.

• For each disjunction cj that includes ai, we include the transition (zj, xi) iff ai

is true. And, for each disjunction cj that includes ¬ai, we include transition

(zj, x
′
i) iff ai is false.
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Figure 7.5: The partial structure of the multitolerant program

Now, we show that p′ is multitolerant in the presence of faults ffailsafe, fnonmasking,

and fmasking.

• p′ in the absence of faults. p′|S = p|S. Thus, p′ satisfies spec in the absence

of faults.

• Masking tolerance to fmasking. If the faults from fmasking occur then the

program can be perturbed to (1) yi, 1≤ i≤n, or (2) zj, 1≤j≤M .

In the first case, if ai is true then there exists exactly one sequence of transitions,

〈(yi, xi), (xi, s)〉, in p′[]fmasking. Thus, any computation of p′[]fmasking eventually

reaches a state in the invariant. Moreover, starting from yi the computations of

157



p′[]fmasking do not violate the safety specification. And, if ai is false then there

exists exactly one sequence of transitions, 〈(yi, x
′
i), (x

′
i, s)〉, in p′[]fmasking. By

the same argument, even in this case, any computation of p′[]fmasking reaches

a state in the invariant and does not violate the safety specification during

recovery.

In the second case, since cj evaluates to true, one of the literals in cj evaluates

to true. Thus, there exists at least one transition from zj to some state xk (re-

spectively, x′
k) where ak (respectively, ¬ak) is a literal in cj and ak (respectively,

¬ak) evaluates to true. Moreover, the transition (zj, xk) is included in p′ iff ak

evaluates to true. Thus, (zj, xk) (respectively, (zj, x
′
k)) is included in p′ iff (xk, s)

(respectively, (x′
k, s)) is included in p′. Since from xk (respectively, x′

k), there

exists no other transition in p′[]fmasking except (xk, s), every computation of p′

reaches the invariant without violating safety. Based, on the above discussion,

p′ is masking tolerant to fmasking.

• Failsafe tolerance to fmasking ∪ ffailsafe. Clearly, based on the case consid-

ered above, if only faults from fmasking occur then the program is also failsafe

fault-tolerant. Hence, we consider only the case where at least one fault from

ffailsafe has occurred.

Faults in ffailsafe occur only in state xi, 1≤ i≤ n. And, p′ reaches xi iff ai is

assigned true in the satisfaction of the given 3-SAT formula. Moreover, if ai is

true then there is no transition from vi. Thus, after a fault transition of class

ffailsafe occurs p′ simply stops. Therefore, p′ does not violate safety.

• Nonmasking tolerance to fmasking ∪ fnonmasking. This proof is similar

to the proof of failsafe fault-tolerance shown above. Specifically, we only need

to consider the case where at least one fault transition of class fnonmasking has

occurred.
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Faults in fnonmasking occur only in state x′
i, 1≤ i≤n. And, p′ reaches x′

i iff ai is

assigned false in the satisfaction of the given 3-SAT formula. Moreover, if ai is

false then the only transition from vi is (vi, s). Thus, in the presence of fmasking

and fnonmasking, p′ recovers to its invariant. (Note that the recovery in this case

violates safety.)

Lemma 7.15 If there exists a multitolerant program that solves the instance of the

synthesis problem identified earlier then the given 3-SAT formula is satisfiable.

Proof. Suppose that there exists a multitolerant program p′ derived from the

fault-intolerant program, p, identified in Section 7.5.2. Since the invariant of p′, S ′,

is non-empty and S ′ ⊆ S, S ′ must include state s. Thus, S ′ = S. Also, since each

yi, 1 ≤ i ≤ n, is directly reachable from s by a fault from fmasking, p′ must provide

safe recovery from yi to s. Thus, p′ must include either (yi, xi) or (yi, x
′
i). We make

the following truth assignment as follows: If p′ includes (yi, xi) then we assign ai

to be true. And, if p′ includes (yi, x
′
i) then we assign ai to be false. Clearly, each

propositional variable in the 3-SAT formula will get at least one truth assignment.

Now, we show that the truth assignment to each propositional variable is consistent

and that each disjunct in the 3-SAT formula evaluates to true.

• Each propositional variable gets a unique truth assignment. Suppose that

there exists a propositional variable ai, which is assigned both true and false,

i.e., both (yi, xi) and (yi, x
′
i) are included in p′. Now, vi can be reached by the

following transitions (s, yi), (yi, x
′
i), and (x′

i, vi). In this case, only faults from

fmasking and fnonmasking have occurred. Hence, p′ must provide recovery from vi

to invariant. Also, vi can be reached by the following transitions (s, yi), (yi, xi),

and (xi, vi). In this case, only faults from fmasking and ffailsafe have occurred.

Hence, p′ must ensure safety. Based on the above discussion, p′ must provide

a safe recovery to the invariant from vi. Based on the definition of the safety
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specification identified in Section 7.5.2, this is not possible. Thus, propositional

variable ai is assigned only one truth value.

• Each disjunction is true. Let cj = ai ∨ ¬ak ∨ ar be a disjunction in the given

3-SAT formula. The corresponding state added in the instance of the multitol-

erance problem is zj. Note that state zj can be reached by the occurrence of a

fault from fmasking from s. Hence, p′ must provide safe recovery from zj. Since

the only safe transitions from zj are those corresponding to states xi, x′
k and

xr, p′ must include at least one of the transitions (zj, xi), (zj, x
′
k), or (zj, xr).

Now, we show that the transition included from zj is consistent with the truth

assignment of propositional variables. Specifically, consider the case where p′

contains transition (zj, xi) and ai is assigned false, p′ can reach xi in the presence

of faults from fmasking alone. Moreover, if ai is assigned false then p′ contains the

transition (yi, x
′
i). Thus, x′

i can also be reached by the occurrence of faults from

fmasking alone. Based on the above proof for unique assignment of truth values

to propositional variables, p′ cannot reach xi and x′
i in the presence of fmasking

alone. Hence, if (zj, xi) is included in p′ then ai must have been assigned truth

value true. Likewise, if (zj, x
′
k) is included in p′ then ak must be assigned truth

value false. Thus, with the truth assignment considered above, each disjunction

must evaluate to true.

Theorem 7.16 The problem of synthesizing multitolerant programs from their fault-

intolerant versions is NP-complete.

7.5.4 Failsafe-Nonmasking Multitolerance

In this section, we extend the NP-completeness proof of synthesizing multitolerance

for the case where we add failsafe fault-tolerance to one class of faults, say ffailsafe,

and we add nonmasking fault-tolerance to another class of faults, say fnonmasking.
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Our mapping for this case is similar to that in Section 7.5.2. We replace the

fmasking fault transition (s, yi) with a sequence of transitions of ffailsafe and fnonmasking

as shown in Figure 7.6. Likewise, we replace fault transition (s, zj) with a structure

similar to Figure 7.6. Thus, yi (respectively, zi) is reachable by ffailsafe faults alone

and by fnonmasking faults alone. As a result, vi is reachable in the computations of

p′[]ffailsafe and in the computations of p′[]fnonmasking. Thus, to add multitolerance,

safe recovery must be added from vi to s (cf. Figure 7.4). Now, we note that with

this mapping, the proofs of Lemmas 7.14 and 7.15 and Theorem 7.16 can be easily

extended to show that synthesizing failsafe-nonmasking multitolerance is NP-complete.

Thus, we have

Corollary 7.17. The problem of synthesizing failsafe-nonmasking multitolerant pro-

grams from their fault-intolerant version is NP-complete.
y
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Figure 7.6: A proof sketch for NP-completeness of synthesizing failsafe-nonmasking multi-
tolerance.

7.6 Summary

In this chapter, we investigated the problem of synthesizing multitolerant programs

from their fault-intolerant versions. The input to the synthesis algorithm included

the fault-intolerant program, different classes of faults to which fault-tolerance had to

be added, and the level of tolerance provided for each class of faults. Our algorithms

ensured that the synthesized program provided (i) the specified level of fault-tolerance
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if a fault from any single class had occurred, and (ii) the minimal level of fault-

tolerance if faults from multiple classes occurred.

We presented a sound and complete algorithm for the case where failsafe (respec-

tively, nonmasking) fault-tolerance would be added to one class of faults and masking

fault-tolerance would be provided to another class of faults. Thus, in these cases, if

a multitolerant program could be synthesized for the given input program, our algo-

rithms would always produce one such fault-tolerant algorithm. The complexity of

these algorithms is polynomial in the state space of the fault-intolerant program.

For the case where one needs to add failsafe fault-tolerance to one class of faults

and nonmasking fault-tolerance to another class of faults, we showed that this problem

is NP-complete. As mentioned earlier, this result was counterintuitive as adding

failsafe and nonmasking fault-tolerance to the same class of faults can be done in

polynomial time. However, adding failsafe fault-tolerance to one class of faults and

nonmasking fault-tolerance to another class of faults is NP-complete.

Although the results focused in this chapter deal with the high atomicity model,

we note that the algorithms in high atomicity model are important in synthesizing

distributed fault-tolerant programs as well. Specifically, our algorithms identify a

limit up to which even highly powerful processes can add the necessary multitoler-

ance. Thus, the output of these algorithms can be used in identifying the limits that

distributed processes –along with their limitation on reading and writing variables

of the program– can achieve in terms of adding the necessary multitolerance. As an

illustration, we note that in Chapter 5, we have identified how algorithms in high

atomicity can be systematically used in enhancing the level of fault-tolerance to a

single class of faults.
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Chapter 8

FTSyn: A Software Framework for

Automatic Synthesis of

Fault-Tolerance

In this chapter, we present the design and the internal working of the framework

Fault-Tolerance Synthesizer (FTSyn) that we have developed for the synthesis of

fault-tolerant distributed programs. This framework allows the users to automatically

(respectively, interactively) add fault-tolerance. We also show that our framework

permits one to add new heuristics for adding fault-tolerance. Towards this end, we

describe the addition of several heuristics (based on the algorithms proposed in [14]

and in Chapter 5) for different steps involved in adding fault-tolerance. Further, we

show how one can easily change the internal representation of different entities in the

framework.

We have used our framework to synthesize several fault-tolerant programs among

them (i) an altitude switch that controls the altitude of an aircraft by monitoring

the altitude sensors and generating necessary command signals, where the altitude

switch tolerates the corruption of altitude sensors; (ii) a token ring protocol that

tolerates process-restart faults; (iii) an agreement protocol that tolerates Byzantine
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faults; (iv) an agreement program that tolerates both Byzantine faults and fail-stop

faults; (v) an alternating bit protocol program that tolerates message-loss faults, and

(vi) a Triple Modular Redundancy program that tolerates input-corruption faults.

These examples illustrate the potential of our framework in adding fault-tolerance to

different types of faults with different natures.

We proceed as follows: in Section 8.1, we illustrate how the developers of fault-

tolerance can synthesize fault-tolerant programs using our framework. In Section

8.2, we present the design of the framework, and discuss the internal working of the

framework. In Section 8.3, we show how one can integrate new heuristics into our

framework. In Section 8.4, we present the way in which one can change the internal

representation of entities involved in the framework. In Section 8.5, we present a

simplified version of an altitude switch synthesized using our framework. We make

concluding remarks and discuss future work in Section 8.6.

8.1 Adding Fault-Tolerance to Distributed Pro-

grams

In this section, we first describe the input and the output of our framework (cf.

Section 8.1.1). Then, in Section 8.1.2, we give an overview of framework fractions

that participate in the automatic synthesis of fault-tolerant programs. We implement

a deterministic version of Add ft algorithm (cf. Section 2.8) and a set of heuristics

developed in [14, 15] to synthesize a fault-tolerant program. Further, in Section

8.1.3, we illustrate how the users can interact with the framework in order to semi-

automatically synthesize a fault-tolerant program from its fault-intolerant version.

8.1.1 The Input/Output of the Framework

In this subsection, we explain how developers of fault-tolerance should prepare the

input to our framework and how the framework provides the output to its users.
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The input of our framework consists of the fault-intolerant program, its invariant, its

safety specification, its initial states, and a class of faults.

We represent the input fault-intolerant program by Dijkstra’s guarded commands

[22]. A guarded command (action) is of the form g → st, where g is a state predicate

and st is a statement that updates the program variables. The guarded command

g → st includes all program transitions {(s0, s1) : g holds at s0 and the atomic

execution of st at s0 takes the program to state s1}. The output of our framework

is also the abstract structure of the fault-tolerant program, represented by guarded

commands.

We note that there exist automated techniques (e.g., [42, 43]) by which we can ex-

tract the abstract structure of programs written in common programming languages,

and then provide our framework with the abstract structure of programs. Moreover,

after the synthesis of a fault-tolerant program, there exist automated techniques (e.g.,

[44, 45, 46]) that allow us to refine the abstract structure of the fault-tolerant pro-

gram while preserving its correctness and fault-tolerance properties. Next, we present

a very simple example of a token ring program to illustrate the way developers can

communicate with our framework to add fault-tolerance. Our goal is to provide an

overall picture about the input/output of our framework. Afterwards, in Subsection

8.1.2, we show the internal working of our framework and how it synthesizes the

fault-tolerant token ring program.

8.1.1.1 Token ring program

The fault-intolerant program consists of four processes P0, P1, P2, and P3 arranged in

a ring. Each process Pi, 0 ≤ i ≤ 3, has a variable xi with the domain {−1, 0, 1}. We

say that process Pi, 1 ≤ i ≤ 3, has the token if and only if (xi 6= xi−1) and fault

transitions have not corrupted Pi and Pi−1. And, P0 has the token if (x3 = x0) and

fault transitions have not corrupted P0 and P3. Process Pi, 1 ≤ i ≤ 3, copies xi−1 to

xi if the value of xi is different than xi−1. This action passes the token to the next
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process. Also, if (x0 = x3) holds then process P0 copies the value of (x3 ⊕ 1) to x0,

where ⊕ is addition in modulo 2. Now, if we initialize every xi, 0 ≤ i ≤ 3, with 0

then process P0 has the token and the token circulates along the ring. In the input

file of our framework, we specify the actions of P0 as follows (keywords are shown in

italic):

1 process P0

2 begin

3 (x0 == x3) -> x0 = ((x3+1)%2);

4 read x0, x3;

5 write x0;

6 end

Since processes P1, P2, and P3 are similar, we present their actions in a parame-

terized format, where 1 ≤ i ≤ 3.

1 process Pi

2 begin

3 (xi != x(i-1)) -> xi = x(i-1);

4 read xi, x(i-1);

5 write xi;

6 end

Read/Write restrictions. Each process Pi, 1 ≤ i ≤ 3, is only allowed to read xi−1

and xi, and allowed to write xi. Process P0 is allowed to read x3 and x0, and write

x0. We specify the read/write restrictions of a process by read and write keywords

inside the body of the process (cf. lines 4 and 5 in the body of Pi).

Faults. The faults are also modeled as a set of guarded commands that change the

values of program variables. In the case of the token ring program, the faults may

corrupt at most three processes. Also, in this example, the faults are detectable in

that a process that is corrupted can detect if it is in a corrupted state. Hence, we

model the fault at process Pi by setting xi = −1. Thus, one of the fault actions that
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corrupts x0 is represented as follows:

1 fault TokenCorruption

2 begin

3 ( ((x0!=-1)&&(x1!=-1)) || ((x0!=-1)&&(x2!=-1)) ||

4 ((x0!=-1)&&(x3!=-1)) || ((x1!=-1)&&(x2!=-1)) ||

5 ((x1!=-1)&&(x3!=-1)) || ((x2!=-1)&&(x3!=-1)) )

6 -> x0 = -1;

7 end

Note that there exist no read/write restrictions for the fault transitions because

we assume that fault transitions can read and write arbitrary program variables.

Safety specification. The safety specification of the fault-intolerant program is rep-

resented as a Boolean expression over program variables. In the token ring program,

the problem specification stipulates that the fault-tolerant program is not allowed

to take a transition where a non-corrupted process copies a corrupted value from its

neighbor. Also, the program should not reach a state where there exists more than

one token. In the input of the framework, we represent the specification as follows.

1( ((x1s!=-1)&&(x1d==-1)) || ((x2s!=-1)&&(x2d==-1)) ||

2 ((x3s!=-1)&&(x3d==-1)) || ((x3s==-1)&&(x0s!=x0d)) )

Note that we have added a suffix “s” (respectively, suffix “d”) to the variable

names that stands for source (respectively, destination). Since the above condition

specifies a set of transitions tspec using their source and destination states, we need to

distinguish between the value of a specific variable xi in the source state of tspec (i.e.,

xis means the value of xi in the source state of tspec) and in the destination state of

tspec (i.e., xid means the value of xi in the destination state of tspec).

Invariant. The invariant is also specified as a Boolean expression over program

variables. The invariant of the token ring program consists of the states where no

process is corrupted and there exists only one token in the ring. We represent the

invariant of the program using the invariant keyword followed by a state predicate.
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1 invariant

2 ((x0==1)&&(x1==0)&&(x2==0)&&(x3==0)) ||

3 ((x0==1)&&(x1==1)&&(x2==0)&&(x3==0)) ||

4 ((x0==1)&&(x1==1)&&(x2==1)&&(x3==0)) ||

5 ((x0==1)&&(x1==1)&&(x2==1)&&(x3==1)) ||

6 ((x0==0)&&(x1==0)&&(x2==0)&&(x3==0)) ||

7 ((x0==0)&&(x1==0)&&(x2==0)&&(x3==1)) ||

8 ((x0==0)&&(x1==0)&&(x2==1)&&(x3==1)) ||

9 ((x0==0)&&(x1==1)&&(x2==1)&&(x3==1))

Initial states. We also specify some initial states in the input of the synthesis frame-

work. While these initial states are included in the invariant of the fault-intolerant

program, we find that explicitly listing them assists in adding fault-tolerance. The

initial states of the token ring program are as follows (init and state are keywords):

1 init

2 state x0 = 0; x1 = 0; x2 = 0; x3 = 0;

3 state x0 = 1; x1 = 1; x2 = 1; x3 = 1;

The output fault-tolerant program. Finally, the output of our framework is also

generated in guarded commands. For the token ring program, the actions of process

P0 in the synthesized fault-tolerant program are as follows:

1 (x0==-1) && (x3==1) -> x0 := 0;

2 |

3 (x0==1) && (x3==1) -> x0 := 0;

4 |

5 (x0==0) && (x3==0) -> x0 := 1;

6 |

7 (x0==-1) && (x3==0) -> x0 := 1;

The above actions mean that P0 can copy the value of (x3 ⊕ 1) to x0 as long as

x3 6= −1. We present the actions of other processes in a parameterized format.

168



1 (xi==1) && (x(i-1)==0) -> xi := 0;

2 |

3 (xi==-1) && (x(i-1)==0) -> xi := 0;

4 |

5 (xi==0) && (x(i-1)==1) -> xi := 1;

6 |

7 (xi==-1) && (x(i-1)==1) -> xi := 1;

The above actions stipulate that each process Pi (1 ≤ i ≤ 3) can copy the value of

xi−1 to xi if ((xi−1 6= −1)∧ (xi 6= xi−1)) holds (i.e., Pi−1 is not corrupted). We would

like to note that the token ring program that we have automatically synthesized using

our framework is the same as the program that was manually designed in [10].

8.1.2 Framework Execution Scenario

In this subsection, we discuss the sample execution scenario for the case where fault-

tolerance is added without any user interaction. Also, we use the token ring example

to illustrate the execution of the synthesis algorithm. In this scenario, the synthesis

algorithm consists of four fractions: Initialize, PreserveInvariant, ModifyInvariant,

and ResolveCycles (cf. Figure 8.1).

Expanding the reachability graph. Before the execution of the synthesis algo-

rithm, the framework uses initial states and program (respectively, fault) transitions

to generate the state-transition graph of the fault-intolerant program. Since this

directed graph only includes those states of the state space that are reachable by

program/fault transitions from initial states, we call it a reachability graph of the

fault-intolerant program. (It also represents the fault-span of the fault-intolerant

program.)

The reachability graph of the token ring program. For the token ring program pre-

sented in Section 8.1.1, the reachability graph is equal to its state space and includes

81 states. Let 〈x0, x1, x2, x3〉 denote a state of the token ring program. Thus, starting
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Figure 8.1: The framework deterministic execution mechanism.
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from the initial state s0 = 〈0, 0, 0, 0〉, fault transitions may perturb the program to

s1 = 〈−1, 0, 0, 0〉, where process P0 is corrupted. From s1, process P1 copies the cor-

rupted value and the fault-intolerant program reaches state s2 = 〈−1,−1, 0, 0〉. As

a result, starting from the given initial states, a combination of program and fault

transitions can take the state of the program to any possible state in the whole state

space.

Execution of fraction (I). After the expansion of the reachability graph, the

framework executes every step of the synthesis algorithm (i.e., F1-F6 in Figure 2.4)

on the reachability graph of the fault-intolerant program in order to derive a reach-

ability graph of the fault-tolerant program. First, in fraction (I) (cf. Figure 8.1),

the synthesis algorithm calculates the sets of ms states and mt transitions (in the

reachability graph).

The token ring program in fraction (I). In the case of the token ring program, safety

is violated when a process copies a corrupted value from its neighbor. Thus, fault

transitions do not directly violate safety, and as a result, the set of ms states is

empty. Also, since ms is empty, the set of mt transitions is equal to the set of

program transitions that directly violate safety.

Execution of fraction (II). Then, the synthesis algorithm moves to fraction (II)

where we attempt to identify a valid fault-span T ′ that (i) is closed in p′[]f ; (ii)

does not include any ms states or safety-violating transitions of mt, and (iii) does

not include any deadlock states outside the invariant. While executing in fraction

(II), we leave the invariant S ′ unchanged. This is due to the fact that the addition

problem requires that the invariant of the fault-tolerant program is a subset of the

invariant of the fault-intolerant program. Thus, states inside the invariant of the

fault-intolerant program are important; removing them prematurely can cause the

automated synthesis to fail.

Also, when we remove ms states (respectively, remove mt transitions) from T ′ in

171



order to satisfy F3, the new fault-span will be a subset of initial T ′. As a result,

those transitions that start in the new fault-span and end in the part of T ′ that is

not in the new fault-span violate the closure of the fault-span (i.e., F2) and must be

removed. Hence, after satisfying F3, we may need to re-satisfy F2. A similar scenario

can happen while resolving deadlock states (i.e., satisfying F4). Hence, fraction (II)

is an iterative procedure. The execution continues in fraction (II) until an iteration

does not cause any changes or until the number of iterations exceeds a predetermined

bound.

The token ring program in fraction (II). For the token ring program, the framework

removes (groups of) program transitions that violate safety of specification. For

example, the transition that process P1 takes from s1 to s2 violates the safety of

specification. Hence, the synthesis algorithm removes (s1, s2) in fraction (II). As

a result, s1 = 〈−1, 0, 0, 0〉 becomes a state without any outgoing transition; i.e.,

deadlock state.

The execution of fraction (II) does not create any deadlock states inside the invari-

ant of the token ring program since ms is empty and no mt transition exists inside

the invariant. Thus, in the first iteration, the synthesis algorithm only removes a

set of transitions in the fault-span outside the invariant (i.e., mt transitions and the

transitions that violate the closure of fault-span).

Execution of fraction (III). At the end of fraction (II), if the resulting program

does not satisfy F1-F6, we modify the invariant S ′ in fraction (III) to ensure that

the invariant S ′ is closed in the program p′, i.e., F5 is satisfied. In fraction (III), we

recalculate a valid invariant. In this fraction, the newly added transitions may violate

the closure of the fault-span. Thus, when we exit fraction (III), the conditions F2-F4

may need to be re-satisfied. Hence, we jump to fraction (II) and attempt to re-satisfy

F2-F4. Notice that in fraction (III), we satisfy F4 only for the invariant states; i.e.,

we ensure that there is no deadlock state inside the invariant whereas in fraction (II),
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we resolve deadlock states that are in the fault-span but outside the invariant.

The token ring program in fraction (III). As we mentioned earlier, the removal of mt

transitions creates deadlock states outside the invariant of the token ring program.

For example, state s1 = 〈−1, 0, 0, 0〉 became a deadlock state since the framework

removed a transition to s2 = 〈−1,−1, 0, 0〉 taken by P1. Now, in the fraction (III),

the framework adds recovery transitions to the invariant by allowing a corrupted

process to copy an uncorrupted value from its predecessor. Thus, from s2, process P0

can toggle the value of x3 and correct itself by moving to state s3 = 〈1,−1, 0, 0〉. Now,

from s3, process P1 copies x0 and takes the program to state s4 = 〈1, 1, 0, 0〉, which

is in the invariant. Note that since P1 cannot read variables x2 and x3, the group of

transitions associated with the transition (s3, s4), say g34, includes 9 transitions. By

definition, the values of x3 and x4 remain unchanged in each transition of g34. Also,

P1 does not propagate a corrupted value by executing transition (s3, s4). Thus, no

transition in g34 violates safety of specification.

Execution of fraction (IV). If the values of p′, S ′, and T ′ satisfy formulae F2-

F5 at the end of fraction (III) then we will ensure that p′ will not stay outside its

invariant forever. Toward this end, we move into fraction (IV) where we remove

reachable non-progress cycles in T ′−S ′ (if any).

The token ring program in fraction (IV). As long as there exists an uncorrupted

value, the token ring program can propagate that value along the ring and recover to

the invariant. Since faults can perturb at most three processes, the existence of an

uncorrupted process is always guaranteed. Also, no non-progress cycles exist outside

the invariant of the token ring program. Thus, in this automatic execution scenario,

our framework generates the fault-tolerant token ring program presented in Section

8.1.1 by adding safe recovery from deadlock states outside the invariant.
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8.1.3 User Interactions

Although the framework can automatically synthesize a fault-tolerant program with-

out user intervention, there are some situations where (i) user intervention can help to

speed up the synthesis of fault-tolerant programs, or (ii) a fully automatic approach

fails. In this subsection, we present the nature of the interactions that fault-tolerance

developers can have with our framework.

Our framework permits developers to semi-automatically supervise the synthesis

procedure. In such supervised synthesis, fault-tolerance developers interact with the

framework and apply their insights during the synthesis. In order to achieve this goal,

we have devised some interaction points (cf. Figure 8.1) where the developers can

stop the synthesis algorithm and query it.

At each interaction point, the users can make the following kinds of queries: (i)

apply a specific heuristic for a particular task; (ii) apply some heuristics in a particular

order; (iii) view the incoming program (respectively, fault) transitions to a particular

state; (iv) view the outgoing program (respectively, fault) transitions from a particular

state; (v) check the membership of a particular state (respectively, transition) to a

specific set of states (respectively, transition); e.g., check the membership of a given

state s in the set of ms states, and finally (vi) view the intermediate representation

of the program that is being synthesized. Since our goal is to focus on the technical

details of the framework and its application in adding fault-tolerance, we omit the

details about the user interface of the framework. We refer the reader to the tutorial

about using this framework in the Appendix B.

While we expect that the queries included in this version will be sufficient for

a large class of programs, we also provide an alternative for the cases where the

heuristics fail and these queries are insufficient. Specifically, in such cases, the users

of our framework need to determine what went wrong during synthesis. The answer to

this question is very difficult without the help of automated techniques, especially for
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programs with large state space. To address this issue, developers of fault-tolerance

can obtain the corresponding intermediate program in Promela modeling language

[37]; this program can then be checked by the SPIN model checker to determine

the exact scenario where the intermediate program does not provide the required

fault-tolerance property. The counterexamples generated by SPIN enable the users

to identify the appropriate heuristics that should be applied in subsequent steps of

synthesis.

8.2 Framework Internals

The integration of new heuristics into our framework (respectively, modifying the

internal representation of framework entities) requires some background knowledge

about the design and the internal working of our framework. Hence, in this section,

we present preliminary information that helps the users of the framework (especially

the developers of heuristics) to understand the internal working of the framework. We

use this information in Sections 8.3 and 8.4 to describe how the framework permits

the addition of new heuristics and the ability to change the internal representation of

its entities.

We organize this section as follows: In Section 8.2.1, we introduce the important

classes (i.e., abstract data structures) used in the design of the framework and their

relationship. Then, in Section 8.2.2, we identify three important design patterns that

help to make the design of the framework extensible.

8.2.1 Class Modeling

The input to the synthesis algorithm consists of the following entities: program, pro-

cess, fault, safety specification, invariant, and initial states. Hence, we create the follow-

ing classes corresponding to each entity: Program, Process, Fault, SafetySpecification,

Invariant, and InitialStates. Also, since we can generate the fault-span (i.e., reachability

175



graph) of the fault-intolerant program using the initial states and program (respec-

tively, fault) transitions, we regard the fault-span of the fault-intolerant program as

an input entity. Thus, we model the fault-span of the fault-intolerant program using

ReachabilityGraph (RG) class. The synthesis framework takes the input entities and

then executes the synthesis algorithm in order to generate a fault-tolerant program,

its invariant, and its fault-span. Thus, we model the output entities using the same

category of classes Program, Invariant, and RG.

We depict the class diagram of the synthesis framework in Figure 8.2. This figure

identifies the important classes and their relationship. For example, each Process is

composed of one or more Action objects. (We annotate the composition relation by

black diamonds attached to an arrowed line.) Every Process is associated with zero

or more TransitionGroup objects that are created due to the read restrictions of that

process. (We illustrate associations by solid lines.) Finally, we have derived some new

classes from the original classes of our abstract design by inheritance relationship.

(We annotate inheritance by a solid line attached to a triangle.) For example, we

have an abstract class Transition from which we have inherited two concrete classes

ProgramTransition and FaultTransition.

8.2.2 Design Patterns

In this section, we identify three important design patterns [47], Bridge, Facto-

ryMethod, and Strategy, that we use in our framework. The advantage of using design

patterns with respect to traditional abstract data types stems in the level of flexibility

and reusability that these design patterns provide in the design and implementation

of our framework.

We use the Bridge design pattern (cf. Figure 8.3) in order to achieve extensibil-

ity. The Bridge pattern is a structural design pattern [47] that allows us to sepa-

rate the design class hierarchy from the implementation class hierarchy. This way,

we can independently extend the design and the implementation of the framework
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Figure 8.2: The class diagram of FTSyn.
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by subclassing. For example, we can introduce different implementation hierarchies

corresponding to the AbstractProgram class, where these implementation hierarchies

implement a common interface Program Implementor (cf. Figure 8.3).

Abstraction Hierarchy
 Implementation Hierarchy

Client


+isDeadlock()


AbstractProgram


+isDeadlockImp()


ProgramImplementation1


+isDeadlock()


Program


+isDeadlockImp()


«interface»

Program_Implementor
impRef


Figure 8.3: The Bridge design patterns.

Another requirement for the developers of fault-

tolerance is the ability to apply a specific heuristic at a particular stage of

synthesis. Hence, the framework has to dynamically instantiate different classes

that represent different heuristics at run-time. In order to achieve this goal, we

use the FactoryMethod design pattern (cf. Figure 8.4). The FactoryMethod pattern

is a creational pattern [47] that facilitates the dynamic instantiation of objects at

run-time. Hence, if one adds a new heuristic in the form of a new class, which is

extended from the abstract design of the framework, then the users of the framework

can activate the newly added heuristic at run-time.

As we mentioned in the Introduction, the developers of heuristics should be able

to easily integrate new heuristics into the framework. We presented the contribution

of the Bridge and the FactoryMethod patterns respectively in achieving extensibility

and dynamic instantiation of heuristics at run-time. Yet another issue is the design

of different versions of a heuristic. In the case where there are different algorithms for

a specific step of the synthesis algorithm, we need to implement different versions of
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+factoryMethod()


ReachabilityGraph_Creator


+factoryMethod()


ReachabilityGraph_Concrete_Creator


+solveDeadlock()


AbstractReachabilityGraph


+solveDeadlock()


Graph


Client


Instantiates


Figure 8.4: The FactoryMethod design patterns.

a particular class (respectively, method). For example, in resolving deadlock states,

we may have different heuristics for dealing with a deadlock state. Hence, we need to

have different versions of the solveDeadlock method of the RG class (cf. Figure 8.5).

+Resolve()


DeadlockResolver


+Resolve()


DeadlockResolver1


+solveDeadlock()


RG


+Resolve()


DeadlockResolver2


+Resolve()


DeadlockResolver3


Figure 8.5: Integrating the deadlock resolution heuristics using Strategy pattern.

We use the Strategy pattern [47] to provide a flexible solution to the above-

mentioned problem. In particular, we design a DeadlockResolver class for deadlock

resolution (cf. Figure 8.5). This class has a method called Resolve, where we im-

plement our deadlock resolution heuristic. Then, we apply the Strategy pattern to

DeadlockResolver so that the developers of heuristics can extend new classes from the

DeadlockResolver class and integrate their own heuristic in the Resolve method (cf.

Figure 8.5). Finally, in the solveDeadlock method of the RG class, we use the Fac-

toryMethod design pattern in order to dynamically instantiate different subclasses of
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the DeadlockResolver class at run-time.

8.3 Integrating New Heuristics

In this section, we address the problem of adding new heuristics into our framework

(i.e., the second goal mentioned in the Introduction). Specifically, we show how one

can integrate a new heuristic into our framework so that the added heuristic will be

available to the developers of fault-tolerance during synthesis. Since a new heuristic

will be integrated into a new class or into a method of an existing class, the problem of

adding new heuristics to the framework reduces to the problem of adding new classes

(respectively, methods) to the framework.

We have used the ability to add heuristics for adding several heuristics from [14,

31, 15]. Of these heuristics, we now present the integration of the three heuristics

that we added for resolving deadlocks and discuss our experience in adding them.

First heuristic. Kulkarni, Arora, and Chippada [14] present a heuristic for deadlock

resolution that includes two passes. In the first pass, their heuristic tries to add single-

step recovery transitions from a given deadlock state, sd, to the invariant. Due to

distribution restrictions, when their heuristic adds a recovery transition, trec , it has

to add the group, grec , of transitions that is associated with trec. Moreover, the

addition of grec is not allowed if there exists a transition (s0, s1) ∈ grec such that (i)

(s0, s1) ∈ mt; (ii) (s0, s1 ∈ S) ∧ (s0, s1) /∈ p; (iii) (s0 ∈ T ′) ∧ (s1 /∈ T ′), or (iv)

(s0 ∈ S) ∧ (s1 /∈ S). If adding recovery from sd is not possible, and sd is directly

reachable from the invariant by fault transitions then their heuristic does nothing in

the first pass. Otherwise, their heuristic makes sd unreachable.

In the second pass, if there still exists a deadlock state sd that is directly reachable

from the invariant by fault transitions then their heuristic makes sd unreachable by

removing the corresponding invariant state. At the end of deadlock resolution, if

the invariant is empty then they declare that their heuristic could not synthesize a
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fault-tolerant program. We have integrated their heuristic into the framework using

the DeadlockResolver1 class (cf. Figure 8.5) that inherits from the DeadlockResolver

class.

Second heuristic. The first heuristic only adds single-step recovery to deadlock

states. As a result, it fails in cases where single-step recovery is not possible. For

example, the first heuristic fails in the case where recovery from a deadlock state, say

s′d, is possible via another deadlock state, say sd, from where we have already added

a recovery transition to the invariant. Hence, we develop a new heuristic for adding

multi-step recovery to deadlock states for the cases where single-step recovery to the

invariant is not possible.

Our new heuristic also consists of two passes. In the first pass, we conduct a fix-

point computation that searches through the deadlock states outside the invariant in

the fault-span. In the first iteration of the fixpoint computation, we find all deadlock

states from where single-step recovery to the invariant is possible. In the second itera-

tion, we find all deadlock states from where single-step recovery is possible to recovery

states explored in the first iteration. Continuing thus, we reach an iteration of the

fixpoint computation where either no more deadlock states exist or no more recovery

is possible. In the latter case, we choose to deal with the remaining deadlock states

in the second pass. In the former case, at the end of the fixpoint computation, we

will have a set of states, RecoveryStates, from where there exists a multi-step recov-

ery path to the invariant. (Notice that adding a recovery transition in a distributed

program requires the satisfaction of the grouping requirements described in the first

heuristic.)

In the second pass, we try to remove sd if sd is directly reachable by fault tran-

sitions from the invariant and no recovery can be added to sd. If the removal of sd

requires the removal of one or more invariant states then we remove those invariant

states. During deadlock resolution, if the invariant becomes empty then we declare
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that the synthesis framework failed to synthesize a fault-tolerant program.

In order to integrate this new heuristic into our framework, we extended a new

class DeadlockResolver2 (cf. Figure 8.5) from the abstract class DeadlockResolver and

then implemented our new heuristic in its Resolve method.

Third heuristic. The strategy of the third heuristic is similar to that in the second

heuristic, except that the domain of the fixpoint computation includes all the states

outside the invariant in the fault-span (i.e., (T ′ − S ′)). In other words, the third

heuristic is more general than the second heuristic. (Likewise, the second heuristic is

more general than the first heuristic.) We have also used this heuristic for enhancing

the fault-tolerance of nonmasking programs – where the program only guarantees

recovery to the invariant in the presence of faults and not necessarily a safe recovery

– to masking fault-tolerance [15]. The integration of the third heuristic was fairly

simple. We integrated the third heuristic into a class DeadlockResolver3 (cf. Figure

8.5) extended from the abstract class DeadlockResolver.

The application of heuristics. The second heuristic suffices for the synthesis

of the fault-tolerant token ring program presented in Subsection 8.1.1. However, in

the synthesis of a version of the Byzantine agreement program containing four non-

general processes, since the second heuristic failed, we applied the third heuristic (see

Appendix B for this program).

The developers of fault-tolerance have the option to select one of the above heuris-

tics during synthesis. Despite the generality of the third heuristic, it is not as efficient

as the first two heuristics. Therefore, given a particular problem, the developers can

either use their insight to choose the appropriate heuristic or they can rely on the

framework to make that choice. The former choice provides more efficiency whereas

the latter choice allows more automation.
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8.4 Changing the Internal Representations

As we mentioned in the Introduction, it is difficult to determine a priori the internal

representation that one should use for different entities, namely Program, Fault, Spec-

ification, and Invariant, involved in the synthesis of fault-tolerant programs. Thus, it

is necessary to provide the ability to modify the internal representation of these enti-

ties while reusing the remaining parts of the framework. In fact, there are situations

where one needs to use one internal representation while executing in one fraction

of the framework, and a different internal representation for the same entity while

executing in another fraction of the framework.

In this section, we argue that our framework enables such a change of internal

representation for entities involved in our framework. Towards this end, we discuss our

experience in changing the internal representation of SafetySpecification and Invariant

in our framework. We find that the ability to modify the representation of entities

in this fashion is especially useful for improving the efficiency of the framework as

well as in simplifying the tasks involved in responding to user queries at interaction

points. We discuss these applications next.

Improving the efficiency. The initial implementation of the SafetySpecification

class consisted of a linked list whose elements would each represent a set of safety-

violating transitions. The SafetySpecification class includes a method violates by which

we verify whether a given transition t violates the safety specification or not. In order

to verify the safety of t, we needed to traverse the linked list structure of SafetySpec-

ification. The traversal of the SafetySpecification structure was very time-consuming,

especially when the size of the state space would become large. Since during the

synthesis of a fault-tolerant program we need to invoke the method violates in many

places, the efficiency of this method significantly degrades the overall efficiency of the

synthesis. Hence, we changed the data structure used for the internal representation

of the SafetySpecification class.
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We replaced the linked list structure of the SafetySpecification class with a dummy

data structure. Now, for a given transition t, we first take the source and destination

states of t (specified as st and dt). In order to verify the safeness of t, we then

substitute the values of the program variables at st and dt into the state predicates

that represent the safety specification (e.g., refer to Section 8.5 or Subsection 8.1.1 ).

If the specification predicate holds for st and dt then t violates safety. (Note that we

represent safety specification as a set of transitions that the program is not allowed

to execute.) We have applied the same approach for the Invariant class. Therefore,

instead of traversing a huge linked list data structure, we check only a predicate in

order to find out the safeness of a transition or the membership of a state to the

invariant.

Reasoning about a query. As we discussed in this section, we have two differ-

ent implementations for the SafetySpecification class based on the linked list and the

dummy data structures. The latter data structure helps to improve the efficiency of

the synthesis when we need to automatically synthesize a fault-tolerant program with-

out user intervention. On the other hand, when users interact with our framework,

they may need to know why a particular transition violates the safety specification.

To answer this query, the framework uses the information stored in the linked list

data structure in order to provide the required reasoning for the users. Thus, in such

situations, the framework switches the implementation of the SafetySpecification class

from a dummy to a linked list data structure to provide the required reasoning for

the developers of fault-tolerance.

8.5 Example: Altitude Controller

In this section, we show how we used our framework to synthesize a simplified version

of an altitude switch (ASW) used in aircraft altitude controller. We have adapted

this example from [48] and the output program of our framework is the same as the
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fault-tolerant program that is manually designed in [48]. This example illustrates the

applicability of our framework in automatic synthesis of practical applications.

The program of the altitude switch reads a set of input variables coming from

two analog altitude sensors and a digital altitude sensor. Then, the ASW program

activates an actuator when the altitude is less than a pre-determined threshold.

The fault-intolerant altitude switch (ASW). The ASW program monitors a

set of input variables and generates an output. There exist five internal variables, a

mode variable that determines the operating mode of the program, and four input

variables that represent the state of the altitude sensors. The internal variables are

as follows: (i) AltBelow is equal to 1 if the altitude is below a specific threshold,

otherwise, it is equal to 0; (ii) ActuatorStatus is equal to 1 if the actuator is powered

on, otherwise, it is equal to 0; (iii) Init represents the system initialization when it

is equal to 1; otherwise, it is equal to 0; (iv) Inhibit is equal to 1 when the actuator

power-on is inhibited; otherwise, it is equal to 0, and (v) Reset is equal to 0 if the

system is being reset.

The ASW program can be in three different modes: (i) the Initialization mode

when the ASW system is initializing; (ii) the Await-Actuator mode if the system is

waiting for the actuator to power on, and (iii) the Standby mode. We use an integer

variable Status with domain {−1, 0, 1, 2} to show the system modes in the program

where (i) Status = −1 if the system is in the initialization mode; (ii) Status = 0 if

the system is in the Await-Actuator mode; (iii) Status = 1 if the system is in the

Standby mode, and (iv) Status = 2 if the system is in a faulty state.

Moreover, we model the signals that come from the input (analog and digital)

altitude sensors using the following variables: (i) AltFail is equal to 1 when analog

and digital altitude meters are failed; (ii) if the system remains in the Initialization

mode more than 0.6 second then the variable InitFailed will be set to 1. Otherwise,

InitFailed remains 0; (iii) if the condition AltFail = 1 remains true more than 2
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seconds then the variable AltFailOver will be equal to 1. Otherwise, AltFailOver

remains 0, and (iv) if the system remains in the Await-Actuator mode more than

2 seconds then the variable AwaitOver will be equal to 1. Otherwise, AwaitOver

remains 0.

The output of the ASW program is identified based on the system mode. The

ASW program has an output integer variable WakeupActuator that is equal to 1 if

the system is in the Await-Actuator mode and is equal to 0 otherwise. The domain

of all variables except Status is equal to {0, 1}.

The fault-intolerant program consists of only one process, called Controller. In the

input of our framework, we specify the Controller process as follows:

1 process Controller

2 begin

3

4 ((Status == -1) && (Init == 1)) -> Status = 1; Init = 0;

5 |

6 ((Status == 1) && (Reset == 0)) -> Status = -1; Reset = 1;

7 |

8 ((Status == 1) && (AltBelow == 0) && (Inhibit == 0)

9 && (ActuatorStatus ==0)) -> Status = 0; AltBelow = 1;

10 |

11 ((Status == 0) && (ActuatorStatus == 0)) -> Status = 1; ActuatorStatus = 1;

12 |

13 ((Status == 0) && (Reset == 0)) -> Status = -1; Reset = 1;

14

15 read AltBelow, ActuatorStatus, Init, Inhibit, Reset,

16 AltFail, InitFailed, AltFailOver, AwaitOver, Status;

17

18 write WakeupActuator, AltBelow, ActuatorStatus,

19 Init, Inhibit, Reset, Status;

20 end
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The program changes its mode from Initialization to Standby when the Init vari-

able is equal to 1. Also, the program goes to the Initialization mode when it is either

in Standby or in Await-Actuator mode and the reset signal is received. If the pro-

gram is in the Standby mode and the actuator power-on is not inhibited and the

actuator is not powered on then the program goes to Await-Actuator mode. In the

Await-Actuator mode, the program either (i) powers on the actuator and goes to the

standby mode, or (ii) goes to the Initialization mode upon receiving the reset signal.

The read/write sections in the body of the Controller process identify its read/write

restrictions on the program variables.

Faults. If the altitude sensors incur malfunction then the state of the program will

be perturbed to a faulty state. We represent the fault actions as follows:

1 fault Malfunction

2 begin

3

4 (InitFailed == 1 ) -> InitFailed = 0; Status = 2;

5 |

6 (AltFailOver == 1 ) -> AltFailOver = 0; Status = 2;

7 |

8 (AwaitOver == 1 ) -> AwaitOver = 0; Status = 2;

9

10 end

Safety specification. The problem specification requires that the program does

not change its mode from Standby to Await-Actuator if the altitude sensors are failed;

i.e., AltFail is equal to 1. Also, from the faulty state, the program can only go to

the Initialization mode. Moreover, in the faulty state, the program can recover if it

is not reset. In the input file, we represent the specification as a state predicate.

1

2 ((AltFails == 1) && (Statuss == 1) && (Statusd == 0)) ||
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3 ((Statuss == 2) && ((Statusd == 1) || (Statusd == 0)))||

4 ((Statuss == 2) && (Resets == 1))

As we described in Subsection 8.1.1, to distinguish the value of a variable (e.g.,

AltFail) at the source of a transition from its value at the destination, we append

the variable names with suffixes ’s’ and ’d’ (e.g., AltFails and AltFails).

Invariant. The invariant of the program consists of the states where the program

is not in the faulty state; i.e., Status 6= 2. We specify the invariant as follows:

1 invariant

2

3(Status != 2)

Initial states. We specify the initial state as follows:

1 init

2

3 state

4 WakeupActuator = 0;

5 AltBelow = 1;

6 ActuatorStatus = 0;

7 Init = 1;

8 Inhibit = 0;

9 Reset = 0;

10 AltFail = 0;

11 InitFailed = 1;

12 AwaitOver = 1;

13 AltFailOver = 1;

14 Status = -1;

15

16

Fault-tolerant program. The framework automatically generates the following

fault-tolerant program. We present the actions of the Controller process as follows:
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1 ((Status == -1) && (Init == 1)) -> Status = 1; Init = 0;

2 |

3 ((Status == 1) && (Reset == 0)) -> Status = -1; Reset = 1;

4 |

5 ((Status == 1) && (AltBelow == 0) && (Inhibit == 0)

6 && (ActuatorStatus ==0) && ( AltFail == 0))

7 -> Status = 0; AltBelow = 1;

8 |

9 ((Status == 0) && (ActuatorStatus == 0)) -> Status = 1; ActuatorStatus = 1;

10 |

11 ((Status == 0) && (Reset == 0)) -> Status = -1; Reset = 1;

12 |

13

14 (Status == 2) && (Reset == 0) -> Status = -1; Reset = 1;

The fault-tolerant program has a new recovery action (cf. Line 14), where it

recovers to the initialization mode from faulty state (i.e., states where Status = 2

holds). Also, a new constraint has been added to the third action (cf. Lines 7-9)

where the program is allowed to change its state to the Await-Actuator mode only

when the input sensors are not corrupted; i.e., the condition (AltFail = 0) holds.

8.6 Summary

In this chapter, we presented a framework for adding fault-tolerance to existing fault-

intolerant programs. Our notion of program refers to the abstract structure of pro-

grams (cf. Chapter 2), represented in Dijkstra’s guarded command language [22].

Thus, the input to our framework is an abstract structure of the fault-intolerant

program. The framework synthesizes the abstract structure of the fault-tolerant pro-

gram.

We showed that our framework is extensible in that it permits easy addition of

new heuristics that help in reducing the complexity of adding fault-tolerance. The
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framework also allows one to partially change the internal representation of different

entities used in the synthesis while reusing other entities. These abilities are espe-

cially useful for testing different heuristics as well as testing the effect (in terms of

space, time, etc.) of different internal representations of entities involved in synthesis.

Finally, since we have developed the framework in Java, it is platform-independent;

we have used this framework on Windows/Solaris environment. We also find that the

choice of this implementation makes our framework suitable for pedagogical purposes.

Using our framework, we have synthesized fault-tolerant programs for, among

others, token ring, agreement in the presence of Byzantine faults, and agreement in

the presence of Byzantine and failstop faults. Thus, these examples demonstrate that

the framework can be applied for the cases where we have different types of faults

(process restart, Byzantine and failstop), and for the cases where a program is subject

to multiple simultaneous faults.
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Chapter 9

Ongoing Research

In this chapter, we present ongoing research work, where we have developed prelimi-

nary results. Specifically, we focus on developing heuristics that can extend the scope

of efficient synthesis by transforming non-monotonic programs (respectively, specifi-

cations) to monotonic. Such heuristics are especially beneficial where for a specific

program the monotonicity property (defined in Section 4.3) holds, whereas no guar-

antees are provided for the monotonicity of its specification (or vice versa). Towards

this end, we present a set of heuristics for transforming non-monotonic programs

(respectively, specifications) to monotonic where we benefit from Theorem 4.11 and

synthesize fault-tolerant distributed programs in polynomial time.

Moreover, in this chapter, we present a SAT-based synthesis approach where we

use state-of-the-art SAT solvers to synthesize fault-tolerant distributed programs. In

particular, we show how we reduce different sub-problems in the synthesis of fault-

tolerant programs to the satisfiability problem. Afterwards, we show how we im-

plement our SAT-based approach in the FTSyn framework (presented in Chapter

8).

We proceed as follows: In Section 9.1, we present our heuristics for transforming

non-monotonic programs (respectively, specifications) to monotonic. Then, in Sec-

tion 9.2, we present an algorithm for transforming non-monotonic specifications to
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monotonic. We demonstrate our transformation algorithms by an example in Section

9.3. Subsequently, in Section 9.4, we present our SAT-based synthesis method. We

summarize this chapter in Section 9.5.

9.1 Program Transformation

In this section, our goal is to address the following question: Given a fault-intolerant

distributed program and its invariant that do not satisfy monotonicity requirements,

how can one modify the program and its invariant such that monotonicity requirements

are met while ensuring that the program satisfies its specification from the modified

invariant? To address this question, first, we formally define the problem of trans-

forming programs to monotonic (failsafe-ready) programs in Subsection 9.1.1. Then,

in Subsection 9.1.2, we present an algorithm for solving the transformation problem.

Finally, in Subsection 9.1.3, we show the soundness of our transformation algorithm.

9.1.1 Problem Statement

Given a program p, a state predicate Y , and a Boolean variable x, if p is not positive

(respectively, negative) monotonic on Y with respect to x then our goal is to identify

a program p′ and a state predicate Y ′ such that p′ is positive (respectively, negative)

monotonic on Y ′ with respect to x. We require p′ not to add new computations to

the set of computations of p during such transformation. Thus, Y ′ should be a subset

of Y . Otherwise, if Y ′ includes a state s, where s 6∈ Y , then p′ may create new

computations from s, which is not desirable. Also, for the same reason, p′ must not

include new transitions during such transformation. Thus, we require that the set of

transitions of p′ on Y ′ is a subset of the set of transitions of p on Y ′ (i.e., p′|Y ′ ⊆ p|Y ′).

Hence, we state the problem of transforming non-monotonic programs as follows:
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Problem 9.1.1 Transforming Non-Monotonic Programs to Monotonic

Given p, Y , spec, and x such that p satisfies spec from Y , and

p is not positive (respectively, negative) monotonic on Y with respect to x

Identify p′ and Y ′ such that

Y ′ ⊆ Y ,

p′|Y ′ ⊆ p|Y ′, and

p′ is positive (respectively, negative) monotonic on Y ′ with respect to x

p′ satisfies spec from Y ′.

Before we present our algorithms, we recall the definition of the monotonicity

property from Section 4.3. Observe that in the definition of monotonicity, we implic-

itly refer to transitions (s0, s1) and (s′0, s
′
1) where the value of all variables except x

is the same in s0 and s′0 (respectively, in s1 and s′1). Hence, we introduce the concept

of symmetric transitions with respect to x as follows:

Definition 9.1.2. We say two transitions t = (s0, s1) and t′ = (s′0, s
′
1) are symmetric

with respect to a Boolean variable x (denoted t =x t′) iff the condition ((x(s0) =

x(s1))∧(x(s′0) = x(s′1))∧(x(s0) 6= x(s′0))) holds and the value of all variables in s0 and

s′0 (respectively, in s1 and s′1) are the same.

9.1.2 Transformation Algorithm

In this subsection, we present a sound algorithm to solve Problem 9.1.1. We use the

Definition 9.1.2 in the design of our transformation algorithm (see Figure 9.1). The

algorithm To Positive Monotonic Programs is an iterative procedure that takes the set

of groups of transitions of a distributed program, a state predicate Y , and a Boolean

variable x and generates a distributed program p′ and a state predicate Y ′ such that

p′ is positive monotonic on Y ′ with respect to x. Intuitively, our algorithm removes

the program transitions that go against the monotonicity property. Removing such
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transitions may create deadlock states in program invariant. Hence, we recalculate

another invariant to guarantee that no deadlock states exist in the new invariant. If

our algorithm succeeds in finding such an invariant then we generate a monotonic

(failsafe-ready) program. Otherwise, our algorithm declares failure in generating a

monotonic program.

To Positive Monotonic Program(p: set of transitions, x: Boolean variable, Y : state predicate )
// p is the union of a set of groups of transitions g0, · · · , gm.
{

Step 1: p′ := p; Y ′ := Y ;
Step 2: repeat {

Step 2-1: TRrem := {(s0, s1) : (x(s0) = false) ∧ (x(s1) = false) ∧ ((s0, s1) ∈ p′|Y ′) ∧

(∃(s′

0
, s′

1
) : (s′

0
, s′

1
) =x (s0, s1) : (s′

0
, s′

1
) 6∈ p′|Y ′)};

Step 2-2: if (TRrem = ∅) then
Step 2-2-1: Y ′, p′ := Recalculate Invariant(p′, Y ′);
Step 2-2-2: if ((Y ′ 6= ∅)) return p′, Y ′;

else declare failure in finding a monotonic program;
Step 2-3: t := (s0, s1), where (s0, s1) ∈ TRrem and s0 has the maximum outdegree;
Step 2-4: p′ := p′ − {(s2, s3) : (∃gi : gi ∈ p′ : t ∈ gi ∧ (s2, s3) ∈ gi)}
Step 2-5: Y1 := RemoveDeadlocks(p′, Y ′);
Step 2-6: p1 := EnsureClosure(p′, Y1);
Step 2-5: p′ := p1; Y ′ := Y1;

Step 3: } until (Y ′ = ∅);
Step 4: declare failure in finding a monotonic program;

}

Figure 9.1: Transforming non-monotonic programs to positive monotonic.

After the initialization, in Step 2-1 (cf. Figure 9.1), we calculate the set of tran-

sitions that violate the definition of positive monotonicity. If there exist no such

transitions (i.e., TRrem = ∅) then we will verify (i) the non-existence of deadlock

states in Y ′, and (ii) the closure of p′ in Y ′. When we reach Step 2-2-1, we recalculate

a valid invariant for p′ by invoking the function Recalculate Invariant (cf. Figure 9.2).

Obviously, if we reach Step 2-2-1 in the first iteration then that means the input

program p and Y inherently satisfy the monotonicity requirements. Note that Steps

2-1 and 2-2 verify the monotonicity of the input program, and hence, we do not need

develop a separate verification algorithm.

To recalculate the invariant, we develop an iterative procedure where we first
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use function RemoveDeadlocks to remove the existing deadlock states of p in a state

predicate S (cf. Figure 9.2). The RemoveDeadlocks function returns the largest subset

S1 of S where there exist no deadlock states; i.e., the computations of p are infinite

in S1. After removing the deadlock states of S, there might exist transitions of p that

start in S1 and reach the removed states of S. Such transitions violate the closure of

S1. Using function EnsureClosure (cf. Figure 9.2), we remove (groups of) transitions

that violate the closure of S1. We repeat this procedure until there exist no more

deadlock states or we remove all states of S. (We invoke the function HasDeadlocks

that verifies if there exist deadlock states in a state predicate S of a program p.)

Recalculate Invariant(p : set of transitions, S : state predicate)
// p is the union of a set of groups of transitions g0, · · · , gm.
{

S′ := S; p′ := p;
repeat {
S1 := RemoveDeadlocks(p′, S′);
p1 := EnsureClosure(p′, S1);
p′ := p1; S′ := S1;

} until (¬ HasDeadlocks(p′, S′) ∨ S′ = ∅ );
return S′, p′;

}

RemoveDeadlocks( p : set of transitions, S : state predicate)
// Returns the largest subset of S such that computations of p within that subset are infinite

{ S′ := S

while (∃s0 : s0∈S′ : (∀s1 : s1∈S′ : (s0, s1) 6∈p)) S′ := S′ − {s0};
return S′; }

HasDeadlocks(p : set of transitions, S : state predicate)
// Verify the existence of deadlock states in S.

{ if (∃s0 : s0∈S : (∀s1 : s1∈S : (s0, s1) 6∈p)) return true;
return false; }

EnsureClosure(p : set of transitions, S : state predicate)
// p is the union of a set of groups of transitions g0, · · · , gm.

{ return p−{(s0, s1) : (∃gi : gi ∈ p : ((s0, s1) ∈ gi) ∧
(∃(s′

0
, s′

1
) : (s′

0
, s′

1
) ∈ gi : (s′

0
∈ S ∧ s′

1
6∈ S)))} }

Figure 9.2: Algorithms for removing deadlock states and ensuring the closure of the in-
variant.

In Step 2-3 (see Figure 9.1), we select one of the transitions of TRrem, say t,

whose source state has the maximum number of outgoing transitions (i.e., outdegree).
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Afterwards, we remove the group of transitions associated with t (cf. Step 2-4). In

this way, we reduce the chance of creating more deadlock states. Then, since the

removal of transitions may create deadlock states, we invoke RemoveDeadlocks (in

Step 2-5). Afterward, we use EnsureClosure to remove the transitions (and their

associated groups) that violate the closure of Y1. We continue the iterative procedure

of the algorithm To Positive Monotonic Program until in an iteration either (i) the

state predicate Y ′ becomes empty (in Step 3 or in Step 2-2-2), or (ii) we find a

positive monotonic program (in Step 2-2-2).

Likewise, we design an algorithm To Negative Monotonic Programs for transform-

ing distributed programs to negative monotonic programs. The only difference be-

tween such algorithm and To Positive Monotonic Programs is in calculating the set

of transitions TRrem (see Step 2-1 in Figure 9.1), where we replace the condition

((x(s0) = false) ∧ (x(s1) = false)) with ((x(s0) = true) ∧ (x(s1) = true)).

9.1.3 Soundness

In this subsection, we show that the algorithm To Positive Monotonic Programs (cf.

Figure 9.1) is sound; i.e., the transformed program satisfies the requirements of Prob-

lem 9.1.1. Towards this end, we make the following observations:

Observation 9.1.3 The function RemoveDeadlocks returns a subset S ′ of a predicate

S where the computations of program p in S ′ are infinite.

Proof. Since RemoveDeadlocks only removes states with no outgoing program tran-

sitions, it follows that S ′ does not have new states (i.e., S ′ ⊆ S). Also, every state

that remains in S ′ has at least one outgoing transition in p. Otherwise, it would have

been removed. Therefore, the computations of p are infinite in S ′.

Observation 9.1.4 The functions RemoveDeadlocks and EnsureClosure do not add

any new transitions to the set of transitions of program p.

Proof. The proof follows by construction.

Observation 9.1.5 The function Recalculate Invariant does not add any new states
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(respectively, transitions) to the invariant (respectively, the set of transitions) of pro-

gram p.

Proof. The proof follows from Observations 9.1.3 and 9.1.4.

Theorem 9.1.6 The algorithm To Positive Monotonic Programs is sound.

Proof. We show that the program generated by To Positive Monotonic Program

satisfies the requirements of Problem 9.1.1.

• Y ′ ⊆ Y . The algorithm To Positive Monotonic Program calculates state predi-

cate Y ′ by invoking Recalculate Invariant (in Step 2-2-1) and RemoveDeadlocks

(in Step 2-5). Hence, using Observations 9.1.3 - 9.1.5, it follows that Y ′ ⊆ Y .

• p′|Y ′ ⊆ p|Y ′. The algorithm To Positive Monotonic Program modifies the tran-

sitions of the input program p in Steps 2-2-1, 2-4, and 2-6. Based on observations

9.1.4 and 9.1.5, Steps 2-2-1 and 2-6 do not add any new transitions to the set of

transitions p|Y ′. Also, by construction, Step 2-6 does not add new transitions

to p|Y ′ as well. Thus, it follows that p′|Y ′ ⊆ p|Y ′.

• p′ is positive monotonic on Y ′ with respect to x. Since the set

of transitions TRrem identifies transitions of p|Y that violate the definition

of positive monotonicity of p, and in the final iteration of the algorithm

To Positive Monotonic Program the set of transitions TRrem becomes empty,

it follows that when the algorithm To Positive Monotonic Program terminates

there exist no transitions in p′|Y ′ that violate the positive monotonicity of p′

on Y ′. As a result, the program p′ returned by To Positive Monotonic Program

is positive monotonic on Y ′ with respect to x.

• p′ satisfies spec from Y ′. Based on Observation 9.1.3, Y ′ is a subset of Y

where the computations of p are infinite. Also, using the requirements Y ′ ⊆ Y

and p′|Y ′ ⊆ p|Y ′, it follows that the computations of p′ in Y ′ are a subset

of computations of p in Y ′. Since starting in Y every computation of p is in
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spec, it follows that starting in Y ′ every computation of p′ is in spec. Also, by

construction, Y ′ is closed in p′. Thus, p′ satisfies spec from Y ′.

Based on the above discussion, it follows that To Positive Monotonic Program is

sound.

Theorem 9.1.7 The complexity of algorithm To Positive Monotonic Programs is poly-

nomial in the state space of the input program.

Proof. The maximum number of iterations of the while loop in the body of Re-

moveDeadlocks function (cf. Figure 9.2) is in the order of |S|. Also, for program p,

since S ⊆ Sp, it follows that the worst-case complexity of RemoveDeadlocks is O(|Sp|).

A similar reasoning shows that the worst-case complexity of HasDeadlocks is O(|Sp|).

Also, the number of groups of transitions of p is polynomial in |Sp| since in a

distributed program each transition is associated with a group of transitions, and the

number of transitions included in each process is in the order of |Sp|2. Moreover,

by construction, the size of each group is in the order of |Sp| as well. As a result,

the worst-case complexity of the EnsureClosure (cf. Figure 9.2) will be polynomial in

|Sp|. Based on the above discussion, the complexity of Recalculate Invariant will be

polynomial in |Sp| since the loop inside this function can iterate at most |Sp| times.

Now, in the To Positive Monotonic Programs algorithm, the maximum number

of iterations of the main loop cannot exceed |Y |, where the algorithm removes all

states in Y and declares failure in Step 4. Also, each step of the algorithm has a

polynomial-time complexity based on the above discussion. Therefore, the complex-

ity of To Positive Monotonic Programs is polynomial in the state space of the input

program.

9.2 Specification Transformation

In this section, our goal is to address the following question: How can safety spec-

ifications be strengthened to meet the monotonicity requirements? To address this
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question, in Subsection 9.2.1, we present a formal definition for the problem of trans-

forming non-monotonic specifications to monotonic. Then, in Subsection 9.2.2, we

present a sound algorithm for solving the transformation problem.

9.2.1 Problem Statement

Given a safety specification specsf , a state predicate Y , and a Boolean variable x, if

specsf is not positive (respectively, negative) monotonic on Y with respect to x then

our goal is to derive a specification spec′sf that is positive (respectively, negative)

monotonic on Y with respect to x. In such derivation, we require that if a transition

t satisfies spec′sf then t will satisfy specsf as well. As a result, spec′sf will be a

strengthened version of specsf . Hence, we state the problem of transforming non-

monotonic specifications to monotonic as follows:

Problem 9.2.1 Transforming Non-Monotonic Specifications to Monotonic

Given Y , specsf , and x such that specsf is not positive (respectively, negative)

monotonic on Y with respect to x

Identify spec′sf such that

specsf ⊆ spec′sf

spec′sf is positive (respectively, negative) monotonic on Y ′ with respect to x

Note that we represent safety specifications specsf and spec′sf as two sets of bad

transitions in the state space that must not occur in program computations (cf. Sec-

tion 2). Thus, the condition specsf ⊆ spec′sf states that spec′sf is a restricted version

of specsf by adding more transitions to specsf ; i.e., strengthening specsf .

9.2.2 Transformation Algorithm

To address the transformation Problem 9.2.1 for positive monotonicity, we present an

algorithm that takes a safety specification specsf , a state predicate Y , and a Boolean
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variable x, and generates a safety specification spec′sf such that spec′sf is positive

monotonic on Y with respect to x.

To Positive Monotonic Specification(specsf : safety specification, Y : state predicate,
x: Boolean variable)

{
Step 1: TRadd := {(s0, s1) : (x(s0) = false) ∧ (x(s1) = false) ∧

(s0 ∈ Y ) ∧ (s1 ∈ Y ) ∧ ((s0, s1) 6∈ specsf ) ∧

(∃(s′

0
, s′

1
) : (s′

0
, s′

1
) =x (s0, s1) : (s′

0
, s′

1
) ∈ specsf )};

Step 2: return specsf ∪ TRadd;
}

Figure 9.3: Transforming non-monotonic specifications to monotonic.

In Step 1, the algorithm To Positive Monotonic Specification calculates the set of

transitions that violate the definition of positive monotonicity of specification. Then,

the algorithm strengthens the specification specsf by adding the set of good tran-

sitions TRadd to the existing set of bad transitions (specified by specsf ) in order

to construct a new safety specification spec′sf . The new specification spec′sf is repre-

sented by a new set of bad transitions specsf ∪TRadd. Since the specification returned

by To Positive Monotonic Specification is a strengthened version of the original speci-

fication specsf , the soundness of the above algorithm follows accordingly. (In the case

of negative monotonic specifications, we present a similar algorithm by replacing the

condition ((x(s0) = false) ∧ (x(s1) = false)) with ((x(s0) = true) ∧ (x(s1) = true))

in Step 1 in Figure 9.3. )

Theorem 9.2.2 The algorithm To Positive Monotonic Specification is sound.

Theorem 9.2.3 The complexity of algorithm To Positive Monotonic Specification is

polynomial in the size of Y .

Comment on strengthening the specification. Strengthening the specification does not

destroy the fault-safe property of the specification. Specifically, the transformation

of a specification to a monotonic specification adds new transitions to the set of bad

transitions that must not occur in program computations. Since such new transitions

200



are program transitions, no fault transition will be included as a safety-violating

transition. As a result, the fault-safe property of the specification will be preserved

during the transformation.

Also, since we add new transitions to the specification during transformation,

there may exist program transitions in the invariant that do not violate the original

specification but violate the strengthened monotonic specification. Such transitions

must not occur in the computations of the transformed program, otherwise the pro-

gram will violate the safety of the strengthened specification. In the next section, in

the context of an example, we illustrate how we identify and remove such transitions

from the invariant and then recalculate a new invariant.

9.3 Example: Distributed Control System

In this section, we present an example where we use our transformation algorithms for

efficient addition of failsafe fault-tolerance. Specifically, we first present a distributed

controlling program that is subject to input faults; i.e., the faults that perturb the

input sensors of the program. Then, we transform the specification of the controlling

program to a positive monotonic specification. Since the program is negative mono-

tonic, efficient (i.e., polynomial-time) addition of failsafe fault-tolerance to it becomes

possible.

The fault-intolerant process-control program (PC). The program PC con-

sists of three processes P1, P2, and P3 connected by a loosely-coupled network. The

processes P1 and P2 respectively control the speeds of two electro motors M1 and

M2 located in the same environment but in distant places. The motors M1 and M2

provide the driving force of a conveyer belt that can move in two different directions:

left-to-right and right-to-left. The conveyer belt carries fragile objects that are loaded

when the belt is stationary. Once the objects are loaded, the conveyer belt moves

with an increasing speed up to a maximum speed. Then, the belt stops so that the
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already loaded objects can be unloaded and new objects are loaded.

The speed of the conveyer belt depends on the speeds of M1 and M2. The speeds

of M1 and M2 should be synchronous; i.e., the speed of M1 is equal to the speed of

M2 or is at most one unit more than the speed of M2. When the two electro motors

reach their maximum speed, process P3 resets their speed to 0 and the whole process

repeats. It is required that the temperature of the environment where electro motors

function should not exceed a pre-determined threshold.

The program PC has four integer variables x, y, z, and w. The variable x (respec-

tively, z) is a counter that contains the speed of M1 (respectively, M2). The domain of

x (respectively, z) is equal to {0, · · · , c}, where c is an integer constant. The variable

y is used to represent the movement direction of the conveyer belt. Specifically, if

the direction of the conveyer belt is from left to right then the value of y alternates

between 1 and 0. In the case where the conveyer belt moves from right to left, the

value of y alternates between -1 and 0. Moreover, the value of y is equal to 0 if x = z.

Otherwise, y could be 1 or -1. As a result, the domain of y is equal to {−1, 0, 1}. The

variable w represents the temperature of the environment, which could be in three

different levels of normal, alarming, and critical that are respectively represented by

three values 0, 1, and 2.

Let 〈x, y, z, w〉 denote the global state of the distributed program. The initial

state of the program is 〈0, 0, 0, 0〉, where process P1 starts to speed up (i.e., increment

its counter). Process P1 is responsible to increment x and process P2 increments z.

When both counters reach the maximum value c (i.e., (x = c)∧ (z = c)) the counting

operation will be restarted by process P3.

Read/write restrictions. Process P1 is allowed to read x, y, and z and it can

only write x and y. Process P2 can read x, y, and z, but it is only allowed to write y

and z. Process P3 is allowed to read all program variables, however, it can only write

x and z. Note that P1 and P2 cannot read w due to distribution restrictions.
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Program actions. We present the action of process P1 as follows:

PC1 : (x = z) ∧ (x < c) −→ x := x + 1; y := 1| − 1;

When M1 and M2 have the same speed (i.e., x = z), P1 increments the value of x

(i.e., the speed of M1). The action PC1 indeed represents two actions depending on

the direction of the belt (i.e., the value of y). The action of process P2 is as follows:

PC2 : (x = z + 1) −→ y := 0; z := z + 1;

Process P2 increments the value of z (i.e., the speed of M2) and resets y to zero

since z has become equal to x. Finally, the transitions of P3 are represented by the

following action:

PC3 : (x = c) ∧ (z = c) −→ x := 0; z := 0;

If both counters have reached the maximum value c (i.e., M1 and M2 have reached

their maximum speed) then P3 resets their values to 0.

Safety specification. For application-specific purposes, the safety specification

stipulates that in the case where the belt is moving in the right-to-left direction and

the temperature level is in a critical level (i.e., w = 2), the speed of M2 must remain

less than the speed of M1; i.e., speed of the belt must not be increased in critical

temperature. We represent the safety specification of PC with specPC , where

specPC = {(s0, s1) : (y(s0) = −1) ∧ (x(s1) = z(s1)) ∧ (w(s1) = 2)}

Invariant. The temperature should be in the normal level in ordinary working

conditions. Hence, we represent the invariant of the program by the state predicate

SPC , where

SPC = {s : (w(s) = 0) ∧ ((x(s) = z(s)) ∨ (x(s) = z(s) + 1))}
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M1 and M2 are synchronized in the invariant; i.e., ((x = z) ∨ (x = z + 1)).

Faults. Faults may change the value of the temperature sensor to 1 or 2 when

the speed of M1 is ahead of M2. We represent the fault transitions by the following

action:

F : (x = z + 1) −→ w := 1|2;

Fault-span. We represent the fault-span of program PC by the following state

predicate:

TPC = {s : ((x(s) = z(s)) ∨ (x(s) = z(s) + 1)) ∧ ((x(s) = z(s)) ⇒ (y(s) = 0))∨

((x(s) = z(s) + 1) ⇒ ((y(s) = 1) ∨ (y(s) = −1))) }

Note that the value of w could vary in its domain {0, 1, 2}.

Negative monotonicity of program PC. Since w is not a Boolean variable,

we apply the definition of program monotonicity on the program PC by partitioning

the domain of w to zero and non-zero values. We consider the Boolean value true

corresponding to non-zero values of w and the Boolean value false corresponding to

(w = 0). Since there exists no transition in PC|SPC where the value of w is non-

zero, it follows that the definition of negative monotonicity holds for the program PC.

Thus, the program PC is negative monotonic on SPC with respect to w.

Positive monotonicity of specPC. Now, we investigate the positive monotonicity

of specPC on SPC with respect to w. First, we identify the set of transitions (s0, s1)

that satisfy the following conditions: (i) s0, s1 ∈ SPC ; (ii) (w(s0) = 0) ∧ (w(s1) = 0);

(iii) (s0, s1) does not violate specPC , and (iv) there exists transition (s′0, s
′
1) that is

grouped with (s0, s1) due to inability of reading w, where (s′0, s
′
1) violates specPC

and (w(s′0) 6= 0) ∧ (w(s′1) 6= 0). Thus, for the specification specPC , the algorithm

To Positive Monotonic Specification calculates the set of transitions TRadd (cf. Figure

9.3) as follows:
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TRadd = {(s0, s1) : (x(s0) = z(s0) + 1) ∧ (y(s0) = −1) ∧ (w(s0) = 0) ∧

(x(s1) = z(s1)) ∧ (y(s1) = 0) ∧ (w(s1) = 0)}

The set of transitions TRadd includes those transitions of PC|SPC in which the

values of x and z become equal in their destination state. Although the transitions

of TRadd do not violate specPC by themselves, they are grouped with unsafe tran-

sitions that reach a state where the condition ((w = 2) ∧ (x = z)) holds. Hence,

we strengthen the safety specification by including the set of transitions TRadd in

the set of transitions that violate safety. As a result, the new safety specification

spec′PC = specPC ∪ TRadd satisfies the definition of positive monotonicity for spec′PC

on SPC with respect to w.

Recalculating the invariant of the program PC. After strengthening specPC ,

the program transitions in TRadd ∩ (PC|SPC) violate spec′PC although they do not

violate specPC . When we remove the set of transitions TRadd ∩ (PC|SPC), we create

the following deadlock states in the invariant SPC .

Deadlocks = {s : (x(s) = z(s) + 1) ∧ (y(s) = −1) ∧ (w(s) = 0)}

We invoke the algorithm Recalculate Invariant (cf. Figure 9.2) to recalculate a new

invariant S ′
PC where the computations of PC are infinite in S ′

PC . In the first iteration

of the algorithm Recalculate Invariant, we remove the states in Deadlocks from the

invariant SPC . Since the removal of the above deadlock states does not introduce new

deadlock states, we calculate the new invariant S ′
PC , where

S ′
PC = {s : (((x(s) = z(s)) ∧ (y(s) = 0)) ∨

((x(s) = z(s) + 1) ∧ (y(s) = 1))) ∧ (w(s) = 0)}

The action of the process P1 in the new invariant is as follows:

PC ′
1 : (x = z) ∧ (x < c) −→ x := x + 1; y := 1;
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Note that the above action only assigns 1 to y; i.e., all transitions corresponding

to the action that assigns -1 to y have been removed during synthesis. Now, we

represent the transitions of the process P2 by the following action:

PC ′
2 : (y = 1) ∧ (x = z + 1) −→ y := 0; z := z + 1;

The action of process P3 remains as is. Since program PC ′ is negative monotonic

on S ′
PC with respect to w and its new specification spec′PC is positive monotonic on

S ′
PC with respect to w, failsafe fault-tolerance can be added to PC ′ in polynomial

time (using Theorem 4.11). In fact, in this case, the program PC ′ is failsafe F-tolerant

to spec′PC from S ′
PC .

9.4 SAT-based Synthesis of Fault-Tolerance

In this section, we investigate the use of automated reasoning techniques in the syn-

thesis of fault-tolerant distributed programs. There exist several heuristics-based

approaches [14] (also see Chapter 5) for polynomial-time synthesis of fault-tolerant

distributed programs. Each heuristic identifies a deterministic order for the verifi-

cation of synthesis requirements, where synthesis requirements are conditions that

have to be met by program states and transitions during synthesis so that the syn-

thesized fault-tolerant program is correct by construction. As a result, the efficiency

of synthesis is directly affected by the efficiency of verifying such synthesis require-

ments. Thus, it is desirable to benefit from the existing automated reasoning tools

to efficiently verify synthesis requirements. Specifically, in this section, we focus our

attention on using state-of-the-art SAT solvers during synthesis where we express

different synthesis requirements in terms of the satisfiability problem and use existing

SAT solvers to efficiently verify those requirements.

We organize this section as follows: First, in Subsection 9.4.1, we give an overview

of our SAT-based approach for the synthesis of fault-tolerant distributed programs. In

Subsection 9.4.2, we show how we formulate each synthesis requirement as an instance
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of the satisfiability problem. In Subsection 9.4.3, we discuss the implementation of

our SAT-based synthesis method in the FTSyn framework.

9.4.1 Synthesis Method

In this subsection, we present a general overview of our SAT-based synthesis method.

Specifically, in Subsection 9.4.1.1, we state the problem of reducing synthesis require-

ments to the satisfiability problem. Subsequently, in Subsection 9.4.1.2, we provide

a strategy for using SAT solvers during synthesis for the verification of the synthesis

requirements.

9.4.1.1 Synthesis Requirements Verification

The non-deterministic synthesis algorithm presented in Section 2.8 identifies six re-

quirements that must be verified during the synthesis of a fault-tolerant program from

its fault-intolerant version. For reader’s convenience, we repeat the Add ft algorithms

in Figure 9.4:

Add ft(p, f : set of transitions, S : state predicate, spec : specification,
g0, g1, ..., gmax : groups of transitions)

{
ms := {s0 : ∃s1, s2, ...sn : (∀j : 0≤j<n : (sj , s(j+1)) ∈ f) ∧ (s(n−1), sn) violates spec };
mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) };

Guess S′, T ′, and p′ :=
⋃

(gi : gi is chosen to be included in the fault-tolerant program);
Verify the following

(F1) p′|S′⊆p|S′;
(F2) S′ ⊆ T ′; T ′ is closed in p′[]f ; // T ′ is a fault-span of p′.
(F3) T ′ ∩ ms = {}; (p′|T ′) ∩ mt = {}; // Safety cannot be violated from states in T ′.
(F4) (∀s0 : s0∈ T ′ : (∃s1 :: (s0, s1)∈p′)); // T ′ does not have deadlocks.
(F5) S′ 6={}; S′ ⊆ S; S′ is closed in p′; // S′ is an invariant of p′.
(F6) p′|(T ′−S′) is acyclic; // p′ cannot stay in (T ′ − S′) forever.

}

Figure 9.4: The non-deterministic algorithm for adding fault-tolerance to distributed pro-
grams.

Each one of the conditions F1-F6 identifies a property P of the states (respec-

tively, transitions) of the synthesized program. If a program p′ (consisting of processes

{P0, · · · , Pn}) satisfies all these requirements then that program is fault-tolerant.
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Given a process Pj (0 ≤ j ≤ n) that consists of a set of groups of transitions g0, · · · , gm

(0 ≤ m) and a property P , we say Pj has the property P iff each group of transitions

g0, · · · , gm has the property P. Also, a group of transition gi (0 ≤ i ≤ m) has the

property P iff each transition of gi has the property P .

Also, given a state predicate X that consists of a set of program states, we say X

has the property P iff each state s ∈ X has the property P . Hence, we present the

verification problem as follows:

The verification problem

Given a group of transitions g (respectively, a state predicate X), and

a property P :

Does g (respectively, X) have the property P?

9.4.1.2 Using SAT Solvers

The verification of the conditions F1-F6 requires an exhaustive enumeration of the

states (respectively, transitions) of the program being synthesized, and as a result,

such verification is not efficient for programs with large state space. In this subsection,

we present a SAT-based solution for efficient verification of the synthesis requirements.

To verify the synthesis requirements, we transform the problem of verifying a

property P for a group of transitions g (respectively, a state predicate X) to a Boolean

formula whose satisfiability can be verified by SAT solvers. Specifically, we define a

function BF that takes a group of transitions g (respectively, a state predicate X)

and a property P and generates a Boolean formula. Such transformation can be done

in polynomial time in the state space of the program (cf. Section 9.4.2).

Now, given the function BF , we design a verification sub-layer that provides

verification abilities for the synthesis algorithm (cf. Figure 9.5). Specifically, every

time the synthesis algorithm needs to verify a property P of a group of transitions g

(respectively, a state predicate X), it queries the verification sub-layer with P and g
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for gP for gP for gP

Synthesis Algorithm

Y/N Y/N Y/N
Verify Verify

Verification  Sub-Layer

Verify

. . .. . .

Y/N

SAT

Y/N

SAT

Y/N

SAT

BF(P, g) BF(P, g)BF(P, g)

Figure 9.5: Using SAT solvers for the synthesis of fault-tolerant programs.

(respectively, X). The verification sub-layer transforms the request of the synthesis

algorithm to a Boolean formula BF (P, g) and delivers it to the SAT solver. After

the SAT solver provides the result of the satisfiability of BF (P , g), the verification

sub-layer forwards this result to the synthesis algorithm. The verification sub-layer

has the potential to create multiple instances of the SAT solver to verify P for a set

of groups of transitions in parallel.

9.4.2 Representing Synthesis Requirements as Boolean For-

mulas

In this section, we show how we formulate the verification of a synthesis requirement

in terms of a Boolean formula. First, in Subsection 9.4.2.1, we focus on representing

the basic entities of our formal model (i.e., states, transitions, state predicates, and

transitions predicates) in terms of Boolean formulas. Then, in Subsection 9.4.2.2, we

use the representation of states and transitions to formulate synthesis requirements

F1-F6 (shown in Figure 9.4) in terms of Boolean formulas.

9.4.2.1 Formulating State Transition Graphs

In this subsection, we show how we formulate states, state predicates, transitions, and

transition predicates in terms of Boolean formulas. In the next subsection, we use the

transformations presented in this subsection to formulate the synthesis requirements.
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Representing a state. We recall the definition of a state from Chapter 2, where

we define a state as a value assignment to program variables. Formally, a state s of

a typical program p with the set of variables {v0, · · · , vq} has the form: 〈l0, l1, .., lq〉

where ∀i : 0 ≤ i ≤ q : li ∈ Di, Di is the domain of vi, and q is a positive integer.

Thus, to represent a state s as a Boolean formula, we introduce the transformation

SBF : Sp → B, where B is the set of Boolean formulas over program variables.

SBF (s) = ∧i=q
i=0(vi = li), where li ∈ Di

The SBF transformation generates a unique Boolean formula corresponding to

each state s ∈ Sp; i.e., SBF is a one-to-one function. However, the formula SBF (s)

is specified in terms of equalities over program variables; i.e., (vi = li). To generate a

formula that consists of Boolean variables, we have to transform each term (vi = li)

in SBF (s) into a formula that only consists of Boolean variables. Towards this end,

we introduce dlog(|Di|)e Boolean variables corresponding to each program variable

vi, where |Di| represents the size of the domain of vi. In other words, if the domain

of vi includes |Di| distinct values then we will need dlog(|Di|)e Boolean variables to

encode each value assignment to vi by a unique binary code with length dlog(|Di|)e.

Therefore, the maximum size of SBF (s) is equal to (q + 1) · dlog(K)e, where K is

the size of the domain of a variable vj (0 ≤ j ≤ n) that has the largest domain.

Representing a state predicate. By definition, a state predicate is the union of

a set of states in the state space of p (i.e., Sp). Thus, to represent a state predicate

X ⊆ Sp, we use the function SBF to define a function SPBF : Pow(Sp) → B as

follows:

SPBF (X) = ∨∀s::s∈X SBF (s)

The transformation SPBF takes the disjunction of all the Boolean formulas cor-

responding to all states in X. The resulting formula will be a formula c0∨ c1∨· · · c|X|

in disjunctive normal form where each conjunction cj (0 ≤ j ≤ |X|) represents a

state.
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Representing a transition. To represent a transition (s0, s1) ∈ Sp × Sp, we use

the SBF function and define the function TBF : Sp × Sp → B, where

TBF ((s0, s1)) = SBF (s0) ∧ SBF (s1)

We represent a transitions (s0, s1) as a conjunction of the Boolean formula that

represents its source state s0 and the Boolean formula that represents its destination

state s1. One could argue that TBF should be defined as SBF (s0) ⇒ SBF (s1).

This way, TBF ((s0, s1)) holds for all transitions terminating at s1 and the Boolean

formula SBF (s0) ⇒ SBF (s1) represents more than a single transition. Hence, to

represent an individual transitions (s0, s1), we use the conjunction of SBF (s0) and

SBF (s1).

Representing a transition predicate. We use an approach similar to the one we

used for defining state predicates. In other words, a transitions predicate ∆p ∈ Sp×Sp

is the union of a set of transitions in the state space Sp. Hence, we define function

TPBF : Pow(Sp × Sp) → B to represent a set of transitions ∆p, where

TPBF (∆p) = ∨∀(s0,s1)::(s0,s1)∈∆p TBF ((s0, s1))

Note that we use transition predicates to model the set of program transitions, a

group of transitions, and the safety specification. For example, if specsf represents the

safety specification of a program p then TPBF (specsf ) generates a Boolean formula

corresponding to specsf .

9.4.2.2 Formulating Synthesis Requirements

In this subsection, we show how we formulate the requirements F1-F6 of the non-

deterministic algorithm presented in Subsection 9.4.1. Towards this end, we use the

functions presented in the previous subsection.

We observe that the condition F1 ≡ (p′|S ′ ⊆ p|S ′) verifies whether the set of

transitions p′|S ′ is a subset of the set of transitions p|S ′. Since p′|S ′ and p|S ′ are

transition predicates, we use TPBF to generate the Boolean formulas corresponding
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to p′|S ′ and p|S ′. Hence, to verify F1 we verify the satisfiability of TPBF (p′|S ′) ⇒

TPBF (p|S ′).

Likewise, for the requirements F2 ≡ (S ′ ⇒ T ′) and F5 ≡ (S ′ ⇒ S), we re-

spectively verify the satisfiability of SPBF (S ′) ⇒ SPBF (T ′) and SPBF (S ′) ⇒

SPBF (S). To verify the closure of the state predicate S ′ in the set of transitions of

p′ (cf. F5 in Figure 9.4), we verify the satisfiability of CLBF (S ′, p′), where

CLBF (S ′, p′) = ∧∀(s0,s1)::(s0,s1)∈p′

(SBF (s0) ⇒ SPBF (S ′)) ⇒ (SBF (s1) ⇒ SPBF (S ′))

To verify F3, we simply verify the satisfiability of SPBF (T ′) ∧ SPBF (ms) and

TPBF (p′|T ′) ∧ TPBF (mt). If these two formulas are not satisfiable then F3 is

satisfied.

The requirements F5 stipulates that there exists no cycles in the set of transitions

of p′|(T ′−S ′). As a result, we have to formulate the cycle detection problem in terms of

a Boolean formula. To achieve this goal, we adopt the techniques used in the existing

approaches for symbolic cycle detection [49, 50, 51] where one generates a Boolean

formula whose satisfiability shows the existence of a non-progress cycle in p′|(T ′−S ′).

Towards this end, we define a transformation Reach(s, ∆p) from Sp × Pow(Sp × Sp)

to the set of Boolean formulas B, where Pow(Sp × Sp) is the power set of (Sp × Sp),

and

Reach(s, ∆p) = SPBF (R) , where

R = {s′ : s′ is reachable from s by transitions of ∆p}

Using function Reach, we can construct a Boolean formula that represents the set

of states reachable from a particular state s ∈ Sp. Now, to verify if s is in a cycle, we

only need to verify the satisfiability of Cycle(s, ∆p), where

Cycle(s, ∆p) ≡ (SBF (s) ⇒ Reach(s, ∆p))
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If Cycle(s, ∆p) is satisfiable then s is in a cycle in the graph constructed by the

set of transitions ∆p. In the case where Reach(s, ∆p) ≡ false then it follows that s

is a deadlock state in the state transition graph of ∆p. Thus, using the invalidity of

Reach(s, ∆p), we conclude that s is a deadlock state (i.e., verifying F4 in Figure 9.4).

9.4.3 Implementing SAT-based Synthesis

In this subsection, we present an overview of our implementation strategy where we

implement our SAT-based synthesis method in the FTSyn framework presented in

Chapter 8. Towards this end, we only focus on the part of implementation that is

related to the verification of the requirement F3 (cf. Figure 9.4) since the implemen-

tation approach for verifying other synthesis requirements is similar.

Given a program p, its groups of transitions g0, · · · , gm and its safety specification

specsf , our goal is to identify the groups of transitions whose transitions do not violate

specsf ; i.e., safe groups. In the initial implementation of FTSyn, we exhaustively

verify the safety of the transitions of a group gi ∈ p (0 ≤ i ≤ m). The exhaustive

verification is inefficient for the cases where the size of a group is very large. Hence,

we expect that our SAT-based approach provides a better performance in verifying

the safety of the transition groups.

In the rest of this section, we proceed as follows: First, we present the necessary

transformation for formulating the safety verification problem. Then, we introduce

different layers of our implementation in FTSyn for solving the safety verification

problem.

Safety verification problem. For the program p, we say a group gi of transitions

is safe iff no transition (s0, s1) ∈ gi violates specsf . Since we represent specsf as a

set of transitions that must not occur in program computations, we say gi is safe

iff the set of transitions of gi does not intersect with specsf . Formally, we use the

transformation Safe(gi) to represent the safety of gi, where
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Safe(gi, specsf ) = TPBF (gi) ∧ TPBF (specsf )

To verify the safety of gi, we verify the satisfiability of Safe(gi, specsf ). If

Safe(gi, specsf ) is satisfiable then it follows that the group gi intersects specsf ; i.e.,

gi includes a transition that violates safety. Thus, Safe(gi, specsf ) is satisfiable iff gi

is not safe.

The layers of SAT-based safety verification. To solve the safety verification

problem in FTSyn, we implement the following three layers Boolean formula genera-

tion, CNF formula generation, and native method invocation. In the first layer, we use

a Java API package provided by Alloy analyzer [52] of MIT to formulate the safety

verification problem in terms of a Boolean formula. Then, in the CNF formula gen-

eration layer, we transform the Boolean formula to Conjunctive Normal Form (CNF)

as the existing SAT solvers only accept formulas in CNF format. We use the SAT

solver zChaff [53] since zChaff is one of the most efficient SAT solvers at the time of

implementing our SAT-based approach. Towards this end, we implement a Java na-

tive method where we invoke zChaff to verify the satisfiability of the calculated CNF

formulas. The CNF formula is satisfiable iff the group of transitions whose safety is

being verified is not safe. Now, we discuss the implementation of each layer.

• Boolean formula generation. To generate the Boolean formulas, we first intro-

duce a set of Boolean variables by which we encode the value assignment to

program variables. For example, if a program p has an integer variables x with

the domain {−1, 0, 1} then we use two Boolean variables a1 and a2 to represent

the terms (x = −1), (x = 0), and (x = 1) respectively by the following Boolean

formulas: (a1 ∧ a2), (¬a1 ∧ a2), and (a1 ∧ ¬a2), where ¬aj is the complement

of aj (1 ≤ j ≤ 2). Hence, we represent a state predicate (x = 0) ∨ (x = 1)

by the Boolean formula (¬a1 ∧ a2) ∨ (a1 ∧ ¬a2). Note that since the domain

of x contains only three values, the term (¬a1 ∧ ¬a2) will never be used in the

transformation of state predicates to Boolean formulas.
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In the generation of a Boolean formula corresponding to a transition, say (s0, s1),

the value of a specific variable may be different in s0 and s1. Thus, using a set

of Boolean variables (e.g., a1 and a2 in the above example) for the represen-

tation of the source and the destination states may result in the generation of

contradictory Boolean formulas. To illustrate this problem, consider the above-

mentioned example where we use two Boolean variables a1 and a2 to represent

value assignments to an integer variable x. Suppose that we need to generate

the Boolean formula corresponding to a transition (s0, s1) where the value of

x at s0 is -1 (denoted x(s0) = −1) and the program changes the value of x

to 0 during the transition (s0, s1) (i.e., x(s1) = 0). Now, to formulate (s0, s1)

using Boolean variables a1 and a2, the resulting formula would be equal to

(a1 ∧ a2) ∧ (¬a1 ∧ a2), which is a logical contradiction. Hence, we need to dis-

tinguish the value assignment to variables at the source and the destination of

program transitions.

To distinguish the value assignment to a specific variable in a transition, we

introduce two separate sets of Boolean variables for representing the value of

that variable at the source and at the destination state. For example, we intro-

duce two new Boolean variables b1 and b2 to represent the value assignment to

variable x in the destination of transitions. Thus, the transition (s0, s1), where

x(s0) = −1 and x(s1) = 0, will be formulated as (a1 ∧ a2) ∧ (¬b1 ∧ b2).

• CNF formula generation. Using the approach presented above, we transform

the safety specification and each group of transitions to a Boolean formula

in terms of variables introduced for encoding the value assignments to program

variables. Since zChaff requires the input formula in DIMACS CNF format [54],

we have to transform the generated Boolean formulas to CNF format. Towards

this end, we use an API provided in the Alloy analyzer [52] and integrate it

in FTSyn. Using this API, we transform the generated Boolean formulas to
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CNF format, which can be directly delivered to the SAT solver zChaff. For

example, in DIMACS format, the formula (a1 ∨¬a2 ∨a3)∧ (¬a1 ∨a2 ∨¬a3) will

be represented as follows:

p cnf 3 2

1 −2 3

−1 2 −3

The first line identifies that a CNF formula with 3 variables and two clauses is

being specified. Each clause (i.e., disjunction) must be specified on a separate

line. Also, the variables and their complements are distinguished by a minus

sign.

• Native method invocation. In FTSyn, after we automatically generate a

CNF formula corresponding to TPBF (specsf )∧TPBF (gi), we invoke a native

method where we query zChaff with the generated CNF formula. The source

code of zChaff is available for educational purposes. Hence, we have generated

a Dynamic Link Library so that we invoke zChaff from Java environment when

we instantiate an instance of our framework FTSyn. Therefore, for every group

of transitions gi, we invoke zChaff once to verify the safety of gi.

Using the implementation of our SAT-based approach, we have synthesized the

token ring program presented in Chapter 6. Since we invoke zChaff from Java en-

vironment, the current implementation of our SAT-based approach suffers from the

performance of the Java Native Interface. Nonetheless, our implementation provides

a platform for SAT-based synthesis of fault-tolerant (distributed) programs and the

efficiency of this platform can be improved as the software technology improves.
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9.5 Summary

In this chapter, we presented two directions of research in progress. Specifically, we

discussed the development of heuristics that can transform non-monotonic programs

(respectively, specifications) to monotonic. Since adding failsafe fault-tolerance to

distributed programs that satisfy the monotonicity requirements can be done in poly-

nomial time (cf. Chapter 4), such heuristics extend the scope of programs that can

reap the benefits of efficient synthesis.

Also, we presented a technique for using SAT solvers in the synthesis of fault-

tolerant distributed programs from their fault-intolerant version. We reduce the syn-

thesis requirements to the satisfiability problem and then invoke SAT solvers to solve

those problems. This way, we benefit from the efficiency of the state-of-the-art SAT

solvers during the synthesis of fault-tolerant distributed programs. Currently, we

have created a centralized implementation of our approach, however, we plan to ex-

tend this work for the cases where we deploy our synthesis algorithm on a distributed

platform. Also, we plan to investigate the applicability of other decision procedures

[55] in the synthesis of fault-tolerant distributed programs.

217



Chapter 10

Conclusion and Future Work

In this chapter, we discuss related work, make concluding remarks, and provide some

insight for future research work. Specifically, in Section 10.1, we compare our synthesis

approach to the existing approaches in the literature. Then, in Section 10.2, we

present the contributions of this dissertation. In Section 10.3, we demonstrate the

impacts of the synthesis approach presented in this dissertation. Finally, in Section

10.4, we present open problems and future research directions.

10.1 Discussion

In this section, we discuss issues related to the approach presented in this dissertation.

Specifically, we compare our synthesis method with the existing synthesis approaches

in the literature. Towards this end, we address some questions raised regarding our

synthesis method and the framework FTSyn that we have developed for the synthesis

of fault-tolerant (distributed) programs.

How does the synthesis method presented in this dissertation differ from model-

theoretic synthesis approach?

The synthesis method in model-theoretic approach [2, 56, 3, 57, 4] is based on

a decision procedure for the satisfiability proof of the specification. Although such
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synthesis methods may have slight differences with respect to the input specification

language and the program model that they synthesize, the general approach is based

on the satisfiability proof of the specification. This makes it difficult to provide reuse

in the synthesis of programs; i.e., any changes in the specification require the synthesis

to be restarted from scratch. By contrast, since the input to our synthesis method

is the set of transitions of a fault-intolerant program, our approach has the potential

to reuse those transitions in the synthesis of the fault-tolerant version of the input

program.

Nevertheless, similar to the above-mentioned methods that generate the synchro-

nization skeleton (i.e., abstract structure) of programs, we also generate the abstract

structure of programs. Synthesizing the abstract structure of programs allows us to

(i) focus on concurrency issues in the synthesis of fault-tolerant distributed programs

instead of their functional properties, and (ii) provide the potential of translating the

abstract structure of the synthesized program to multiple programming languages

unlike approaches that focus on the synthesis of programs in a specific programming

language [58].

Model-theoretic approaches model distribution by atomic read/write actions [4]

where in an atomic action a process performs either a read or a write operation.

Kulkarni and Arora [1] present a more general way for modeling distribution restric-

tions where a process is allowed to read/write only a subset of program variables.

Since we have adapted Kulkarni and Arora’s approach for modeling distribution, our

synthesis algorithms benefit from the generality of their modeling.

In addition to the above-mentioned issues, the only implementation of model-

theoretic synthesis approaches that we are aware of is an implementation of Emerson

and Clarke’s method for the synthesis of mutual exclusion protocol [59]. On the other

hand, we have implemented an extensible framework (cf. Chapter 8) where developers

of fault-tolerance synthesize fault-tolerant distributed programs. Our framework is
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not problem-dependent and developers of fault-tolerance can use our framework for

the synthesis of a variety of programs [60]. Also, due to the incompleteness of the

heuristics integrated in our framework, we have chosen to design our framework for

change so that if the existing heuristics fail to synthesize a program then developers

can integrate their new heuristics in the framework without an expensive overhead.

How does the synthesis method presented in this dissertation differ from automata-

theoretic approach where one synthesizes reactive distributed programs [5, 6, 7] that

interact with a non-deterministic environment?

The automata-theoretic approach is a specification-based synthesis method where

one synthesizes a program from its tree automaton specification. Also, automata-

theoretic approaches are mostly used for the synthesis of reactive systems that interact

with a non-deterministic environment [5, 61, 6] whereas in the case of our synthesis

problem, we have complete information about the behavior of the environment (i.e.,

faults) with which the program interacts.

Since our approach supports incremental synthesis of multitolerant programs (cf.

Chapter 7), it has the potential to incrementally add desired fault-tolerance properties

to programs once a new behavior of the environment (i.e., a new class of faults) is

discovered. This way, we decompose the problem of synthesizing reactive programs

into simpler problems. As a result, we do not encounter the complexity of synthesizing

a reactive distributed program [6, 7] that interacts with a hostile environment.

How does the synthesis method presented in this dissertation differ from synthesizing

proof-carrying (certified) code?

In the synthesis of proof-carrying code, the synthesis method takes the input spec-

ification and generates the code of the program annotated by its proof of correctness

[62, 63]. Also, the synthesis method generates a proof checker that is delivered to

the program user. Then, using the proof checker, users verify the correctness of the
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synthesized program to gain high assurance in safety-critical systems. Also, in the

synthesis of certified code, there exists an option for adding domain-specific knowledge

in order to derive more efficient programs. However, such approaches mostly focus on

safety properties of programs whereas our focus is to add all levels of fault-tolerance

to programs.

How does the synthesis method presented in this dissertation differ from synthesizing

controllers in control theory?

Synthesizing discrete-event controllers in control theory is indeed an automata-

theoretic approach. Our approach has several advantages with respect to existing

approaches for the synthesis of controllers. First, the general-case complexity of

synthesizing controllers is PSPACE-complete [64, 65, 66, 67, 68] in the size of the

uncontrolled automaton, whereas our problem is NP-complete. Second, our model of

distribution is general enough to capture different modeling cases in distributed com-

puting whereas in Control theory each controller performs its controlling task individ-

ually and there exists limitations on the communication between controllers. Finally,

our approach is incremental in that we reuse the computations of the fault-intolerant

program for the synthesis of its fault-tolerant version. Such reuse of computations is

expected to be helpful in the cases where the state space is large.

How does the synthesis method presented in this dissertation differ from synthesizing

strategies for two-player games?

Regarding two-player games, most of the approaches in the literature [5, 61, 69, 70]

for the synthesis of winning strategies are focused on the cases where the program

is interacting with an adversary via input/output variables. Such model restricts us

to the cases where faults can only affect a subset of program variables, whereas in

our model faults can perturb the state of the program to any state. Although the

authors of [71] address this shortcoming of two-player games, the language chosen for
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expressing the winning strategy is Propositional Linear Temporal Logic (PLTL) [72].

Since fault-tolerance properties are existential properties, PLTL does not have the

expressiveness power to capture such properties.

Does the fault model used in this dissertation enable us to capture different types of

faults?

Yes. The notion of state perturbation is general enough to model different types

of faults (namely, stuck-at, crash, fail-stop, omission, timing, or Byzantine) with

different natures (intermittent, transient, and permanent faults). As an illustration

of the generality of the notion of state perturbation, we have modeled (i) Byzantine

faults (cf. Subsections 4.4.1 and 5.3.1); (ii) fail-stop faults (cf. Subsection 4.4.2); (iii)

input-corruption faults (cf. Subsection 5.2.1), and (iv) the process-restart faults that

affect the token ring program synthesized in Chapter 6. State-perturbation model

has also been used in designing fault-tolerance to (i) omission faults (e.g., [17]), and

(ii) transient faults and improper initialization (e.g., [19]).

How does FTSyn scale as the state space of programs increase?

In this dissertation, we showed that using FTSyn, we synthesize fault-tolerant pro-

grams that tolerate different types of faults and are simultaneously subject to multiple

faults. The largest state space among the programs that we have synthesized belongs

to an agreement program (see Appendix B for this program) that is simultaneously

perturbed by Byzantine and fail-stop faults (1.3 million states) [73, 60]. Also, in Sec-

tion 8.5, we synthesized a simplified version of an altitude switch used in the altitude

controller of an aircraft. Although the state space of 1.3 million is much smaller than

the state space of many practical applications, we argue that our synthesis framework

has the potential in adding fault-tolerance to real-world applications. Towards this

end, we discuss the following three points:

1. We argue that model checkers were also faced with similar problems with which
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our framework faces regarding the state space explosion. Researchers were using

early versions of model checkers for checking small protocols and verifying the

correctness of operating system kernels [74, 75] despite a state space limit of

about 500,000 states on an average workstation (in the early 90s) [74]. The state

space handled by our framework is comparable to that reported by early model

checkers. We expect that by incorporating the recent optimizations developed

for model checking, it will be possible to increase the state space for which

fault-tolerance can be added using our framework.

2. We have not currently included these optimizing techniques in the current ver-

sion of the synthesis framework as the goal of the framework is to study the

effectiveness of different heuristics, different internal representation of programs,

faults, and the ability to add fault-tolerance to different types of faults. There

exist several possible optimizations that can be applied to the framework to

reduce the synthesis time. However, these optimizations are orthogonal to the

issues at hand. For example, the techniques that are used to determine if a given

group of transitions violates safety or if a given group of transitions is appro-

priate for adding recovery equally affect the above-mentioned goals. (One can

either take advantage of the SAT-based approach (presented in Section 9.4) to

check the safety of a group of transitions, or exhaustively check every transition

of a given group of transitions.) While the design of the framework permits one

to use these techniques, these techniques are orthogonal to the issue of adding

heuristics that focuses on (i) which recovery transitions should be added, and

(ii) how one should deal with safety-violating transitions. In other words, it

is expected that the relative improvement of these optimizations will have the

same effect on different heuristics.
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10.2 Contributions

The contributions of this dissertation are two-fold: theoretical and practical. Re-

garding theoretical contributions, we showed that the problem of synthesizing failsafe

fault-tolerant distributed programs from their fault-intolerant version is NP-complete.

This result was counterintuitive in the sense that Kulkarni and Arora [1] had al-

ready conjectured that adding failsafe fault-tolerance to distributed programs would

be polynomial. Subsequently, in Section 4.3, we identified sufficient conditions for

polynomial-time synthesis of failsafe fault-tolerant distributed programs. Specifically,

we identified monotonic programs and specifications where the addition of failsafe

fault-tolerance to distributed programs can be done in polynomial time. We showed

that if only programs (respectively, specifications) are monotonic then the synthesis

of failsafe fault-tolerant distributed programs will remain NP-complete.

Another theoretical contribution of this dissertation is the enhancement synthesis

algorithms presented in Chapter 5. We showed that one approach for reducing the

complexity of synthesis is to reuse the computational structure of the fault-intolerant

programs in the synthesis of their fault-tolerant version. In particular, we formalized

the problem of enhancing the fault-tolerance of nonmasking fault-tolerant programs

to masking fault-tolerance. Also, we presented a sound and complete algorithm for en-

hancing the fault-tolerance of programs in the high atomicity model – where processes

can atomically read/write program variables. Then, we designed a sound algorithm

for the enhancement of the fault-tolerance of nonmasking distributed programs.

The enhancement technique allows us to partially automate the design of masking

fault-tolerant programs and reap the benefits of automation. Specifically, in the syn-

thesis of masking fault-tolerant programs, if automatic synthesis of the fault-tolerant

program fails due to the large state space of the fault-intolerant program then one

can manually design a nonmasking program and then automatically enhance the level

of fault-tolerance to masking using the enhancement algorithms of Chapter 5.
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We used monotonicity property to extend the scope of programs and specifications

that can reap the benefits of efficient automation. Specifically, we developed heuristics

(cf. Sections 9.1 and 9.2) for the transformation of non-monotonic programs (respec-

tively, specification) to monotonic where Theorem 4.11 can be applied for efficient

addition of failsafe fault-tolerance to distributed programs. In other words, given

a monotonic program (respectively, specification) and a non-monotonic specification

(respectively, program), we design heuristics that transform a non-monotonic speci-

fication (respectively, program) to a monotonic specification (respectively, program)

so that failsafe fault-tolerance can be added in polynomial time. To show the advan-

tage of developing such heuristics, we enhanced the fault-tolerance of a nonmasking

distributed program using our heuristics (cf. Section 9.3).

We also presented a synthesis method for automatic addition of pre-synthesized

fault-tolerance components to fault-intolerant programs (cf. Chapter 6). Our method

enables us to identify commonly encountered patterns in the synthesis of fault-tolerant

distributed programs, and reuse those patterns in the synthesis of different programs.

In other words, to reuse the effort put in the synthesis of one program for the synthe-

sis of another program, we introduced the notion of pre-synthesized fault-tolerance

components.

Moreover, we presented algorithms for automatic specification of pre-synthesized

components during synthesis where we extract a specified component from a library

of pre-synthesized components. Afterwards, in Chapter 6, we presented an algorithm

for ensuring the interference-freedom between the program being synthesized and the

fault-tolerance components being added to that program. Finally, we designed an al-

gorithm for automatic addition of a pre-synthesized component to a fault-intolerant

program. Since the existing algorithms for the synthesis of fault-tolerant distributed

programs are not complete (i.e., the algorithms may fail to synthesize a fault-tolerant

program from a given fault-intolerant program although there exists a fault-tolerant
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program), usage of pre-synthesized components allows us to reduce the chance of

failure in the synthesis of fault-tolerant distributed programs. Furthermore, we have

added pre-synthesized fault-tolerance components with different topologies (e.g., lin-

ear and hierarchical) to different programs (cf. Chapter 6). These examples, illustrate

the applicability of pre-synthesized fault-tolerance components in the synthesis of a

variety of fault-tolerant distributed programs with different topologies.

Using pre-synthesized fault-tolerance components, we also extended the problem

of adding fault-tolerance to the case where new variables can be introduced while

synthesizing fault-tolerant programs. By contrast, previous algorithms required that

the state space of the fault-tolerant program is the same as that of the fault-intolerant

program. Moreover, our synthesis method controls the way new variables are intro-

duced; new variables are determined based on the added components. Hence, the

synthesis method of Chapter 6 controls the way in which the state space is expanded.

Also, in this dissertation, we investigated the problem of synthesizing multitol-

erant programs from their fault-intolerant versions (cf. Chapter 7). Specifically, we

formally defined what multitolerance means where a multitolerant program provides

(i) the specified level of fault-tolerance if a fault from any single class of faults occurs,

and (ii) the minimal level of fault-tolerance if faults from multiple classes occur. Then,

we showed that, in general, the problem of adding multitolerance to high atomicity

programs is NP-complete in the state space of the fault-intolerant program. Subse-

quently, we presented sound and complete synthesis algorithms for special cases of

adding multitolerance where one incrementally adds failsafe (respectively, nonmasking)

fault-tolerance to one class of faults and masking fault-tolerance to another fault-class.

Regarding the practical contributions of this dissertation, we developed the syn-

thesis framework FTSyn (presented in Chapter 8) for developers of fault-tolerance

where they can synthesize fault-tolerant programs. FTSyn integrates existing al-

gorithms and heuristics for the synthesis of fault-tolerant distributed programs and
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allows developers to automatically synthesize fault-tolerant programs from their fault-

intolerant version. Also, FTSyn is extensible in the sense that developers of heuristics

can easily integrate new heuristics into the framework.

Moreover, FTSyn is changeable in the sense that developers can easily change its

implementation, without changing the design of FTSyn. The changeability of FTSyn

is important since changing the implementation of FTSyn may help to increase the

efficiency of the synthesis. Thus, any changes in the implementation should be simple

and cheap. Furthermore, we have integrated a SAT-based synthesis approach in

FTSyn where we use efficient SAT solvers in the synthesis of fault-tolerant distributed

programs (cf. Section 9.4).

10.3 Impact

In this section, we discuss the impacts of this dissertation in research and education.

Regarding research, this dissertation has significant impacts on the development of

fault-tolerant and dependable distributed programs as the extensible and changeable

design of our software framework will help to develop a rich integrated framework of

heuristics for the development of fault-tolerant distributed programs.

Moreover, the approach presented in this dissertation for the synthesis of fault-

tolerant programs can be extended for the synthesis of reactive programs [5]. Towards

this end, we have designed a hybrid synthesis method that benefits from specification-

based approaches [76, 2, 77, 56, 78, 79, 80, 57, 4, 5, 6, 71, 81, 7] and the synthesis

approach presented in this dissertation. Specifically, we have developed an incremen-

tal synthesis method [82] for automatic addition of liveness properties to finite-state

concurrent programs. In particular, in [82], we present a sound and complete algo-

rithm for adding Leads-to [30] properties to programs. The incremental approach of

[82] has the potential to reuse the efforts put in the synthesis of a program for the

synthesis of its improved version.
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Furthermore, the synthesis algorithm in [82] can be integrated with model checkers

to provide automated assistance beyond generating counterexamples; i.e., in the cases

where a model fails to satisfy a property, our synthesis algorithm automatically (i)

identifies the fixability of the model, and (ii) fixes the model if it is fixable. Hence,

we believe the synthesis method presented in this dissertation has the potential to

provide a practical methodology for the synthesis of reactive programs.

Regarding educational impact, we note that using our framework provides the op-

portunity to experience non-trivial concepts regarding distributed and fault-tolerant

systems. We have used the synthesis framework in the graduate distributed system

class as well as in a seminar on fault-tolerance.

In the class on distributed systems, the students find that the interactive na-

ture of the framework is extremely useful in understanding several concepts about

fault-tolerant programs. In this class, the students focused on re-synthesizing a fault-

tolerant program for which the framework had been used successfully. In this case,

the students began with the fault-intolerant program. First, they used the auto-

mated approach to obtain the fault-tolerant program. Subsequently, they focused

on interactive synthesis of the same fault-tolerant program. During this interactive

synthesis, they applied different heuristics and observed the intermediate program.

They explored the state transition diagram of the intermediate program and used the

framework to understand why the intermediate program was not fault-tolerant. This

allowed them to experience the non-deterministic execution of different processes of

the program. Moreover, they could observe individual states and transitions in the

global state transition diagram and could experience the effect of distribution restric-

tions on the complexity of the synthesis of fault-tolerant distributed programs.
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10.4 Future Work

In this section, we present open theoretical problems in the synthesis of fault-tolerant

distributed programs. Also, we discuss future extensions and modification to the FT-

Syn framework presented in Chapter 8. First, we discuss open theoretical problems:

• Identify the polynomial boundary of synthesizing nonmasking fault-tolerant dis-

tributed programs.

As we identified sufficient conditions for the synthesis of failsafe fault-tolerant

distributed programs in Chapter 4, we would like to at least identify the suf-

ficient conditions for polynomial synthesis of nonmasking fault-tolerant pro-

grams. Although we do not have a proof for the NP-hardness of the problem of

synthesizing nonmasking fault-tolerant distributed programs from their fault-

intolerant version, we already know that this problem is in NP (cf. Section

2.8). To the best of our knowledge, no polynomial-time algorithm has yet been

presented for the synthesis of nonmasking distributed programs. Thus, finding

properties of programs that identify sufficient conditions for polynomial-time

synthesis of nonmasking distributed programs remains an open problem.

• Develop nonmasking programs that satisfy the monotonicity requirements.

Since the worst-case complexity of enhancing the fault-tolerance of nonmasking

fault-tolerant distributed programs to masking is exponential (cf. Chapter 5),

we would like to use the notion of monotonicity in order to identify nonmasking

programs whose level of fault-tolerance can be enhanced to masking in poly-

nomial time. Thus, it is desirable to develop a methodology for the design of

nonmasking programs that satisfy the requirements of program monotonicity.

Such design methodology provides a framework for partial automation in the

design of masking programs where one manually develops a nonmasking mono-

tonic program and then applies Theorem 4.11 to automatically enhance the
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level of fault-tolerance to masking.

• Identify the necessary and sufficient conditions for simultaneous addition of

multiple pre-synthesized components.

In Chapter 6, we showed how we add a pre-synthesized corrector to the pro-

gram being synthesized in order to resolve a deadlock state from which existing

heuristics fail to add recovery. Also, we ensured that the execution of the pre-

synthesized component does not interfere with the execution of the program.

Now, since there exist many situations where we need to simultaneously add

such correctors to the program being synthesized, we plan to identify neces-

sary and sufficient conditions for an interference-free addition of multiple pre-

synthesized components to a program.

• Develop a platform for providing automated assistance in model checking beyond

generating counterexamples.

Although model checkers provide user-friendly counterexamples in cases where

a model fails to satisfy a desired property, it is difficult to manually fix a failed

model so that it satisfies a desired property while preserving its existing prop-

erties. We have developed a synthesis algorithm [82] that has the potential

to provide such automated assistance for developers when the model checking

of the program at hand fails. Using the synthesis algorithm of [82], we auto-

matically (i) identify whether or not a model is fixable to satisfy a particular

property in addition to its existing properties, and (ii) fix the model if it is

fixable so that it satisfies a new property in addition to its existing properties.

However, currently, the synthesis algorithm in [82] can only be used for linear

computation model where program properties are specified in Linear Temporal

Logic [72]. To develop a platform for automatic model correction, it is desir-

able to (i) integrate the algorithm [82] in one of the existing model checkers
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(e.g., SPIN [36]) to investigate the practicality of the algorithm of [82], and

(ii) extend the results of [82] for the case where the program computation is

non-linear (e.g., tree-like computation) and program properties are specified in

Computation Tree Logic (CTL) [72].

Now, we discuss issues related to the extensions and improvements of the synthesis

framework FTSyn presented in this dissertation.

• Use model checkers in the synthesis of fault-tolerant programs in order to reduce

the complexity of synthesis.

As mentioned in Chapter 8, the FTSyn framework has the ability to interact

with developers of fault-tolerance. If the synthesis of a fault-tolerant program

fails then developers can ask FTSyn to generate an intermediate version of

the program being synthesized in order to identify what went wrong during

synthesis. FTSyn generates the intermediate program in Promela [37] model-

ing language. Thus, developers can benefit from the SPIN model checker and

verify the fault-tolerance properties. The SPIN model checker returns coun-

terexamples that are enlightening for developers in that they can identify what

heuristic should be applied next in synthesis. Currently, the users of FTSyn

should perform this verification manually. We plan to develop an automated

approach for the communication between FTSyn and model checkers. Such

communication has an important impact on reducing the complexity of synthe-

sis as model checkers can provide behavioral information about the program at

hand. The synthesis algorithm uses this behavioral information to make more

intelligent decisions during synthesis.

• Develop a distributed synthesis platform.

Currently, the implementation of FTSyn is centralized. To extend the scope

of synthesis for real-world applications, we adopt two directions: developing a
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scalable parallel synthesis algorithm, and extending FTSyn for deployment on

a distributed platform. In the first direction, we plan to conduct a survey on

the existing approaches [83, 84, 85, 86, 87] for parallel and distributed model

checking, where one distributes the reachability graph of the model at hand

on a network. Towards this end, we note that the synthesis problem differs

from model checking problem in that during synthesis we modify the program

model to satisfy specific synthesis requirements, whereas model checkers only

verify the program model without performing any modification. We conjecture

that the scalable synthesis will be in a higher complexity class than the scalable

model checking, thus making the development of a scalable synthesis algorithm

more challenging. In the second direction, we plan to simultaneously implement

the achievements in the design of the scalable synthesis algorithm in FTSyn.

As a result, we can experience the applicability of our theoretical results in the

context of distributed FTSyn.

• Develop an on-the-fly synthesis method.

In the synthesis of a fault-tolerant program, FTSyn initially expands the reacha-

bility graph of the fault-intolerant program using program and fault transitions.

For real-world applications, the size of the reachability graph is very large, and

as a result of the space complexity of synthesis, FTSyn may fail to synthesize

a fault-tolerant program. To remedy this problem, we plan to develop a space-

efficient synthesis algorithm where FTSyn partially generates the reachability

graph of the program. Towards this end, we benefit from existing techniques

[88] in the model checking literature for providing space efficiency. Such space-

efficient techniques are orthogonal to the development of a distributed synthesis

algorithm in that we deploy the space-efficient synthesis algorithm on each node

of the scalable synthesis platform discussed above.

232



Appendices
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Appendix A: Programs

Synthesized Using Pre-Synthesized

Components

In this appendix, we present the programs that we have synthesized using pre-

synthesized components. Specifically, we first present an Alternating Bit Protocol

(in Section A.1) that is nonmasking fault-tolerant to message loss faults. Then,

in Section A.2, we present an intermediate diffusing computation program synthe-

sized by our synthesis framework, FTSyn. Subsequently, in Section A.3, we present

the synthesized diffusing computation program after we have added pre-synthesized

components to refine one of the high atomicity recovery actions in the intermediate

program. Finally, in Section A.4, we present a refined version of the synthesized

diffusing computation program in the syntax of the Promela modeling language [37]

where we have verified the synthesized program in the SPIN model checker to gain

more confidence in the implementation of FTSyn.
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A.1 The Promela Model of the Alternating Bit Pro-

tocol

In this section, we present the Promela model of the alternating bit protocol (ABP)

synthesized by adding linear pre-synthesized components to the fault-intolerant ABP

program presented in Section 6.5.

1

2 #define inv

3 ( (((rr != 1) && (cr == -1)) || (br == bs)) &&

4 (((rs != 1) && (cs == -1)) || (br != bs)) &&

5 ((cs == -1) || (cs == bs)) &&

6 ((cs != -1) || (cr != -1) || ((rr + rs) == 1)) &&

7 ((cs == -1) || (cr != -1) || ((rr + rs) == 0)) &&

8 ((cs != -1) || (cr == -1) || ((rr + rs) == 0)))

9

10 #define fs ((cs == -1) || (cs == bs)) &&

11 (((cs != -1) && (cr != -1)) ||

12 (((rr + rs) == 1) || ((rr + rs) == 0)))

13

14 /* The property to be verified [](fs -> <> inv) */

15

16 #define Zs (rs == 0) && (bs ==1) && (cs == -1) /* LCs */

17 #define Zr (rr == 0) && (br ==1) && (cr == -1) /* LCr */

18 #define ZPs (rs == 0) && (bs ==0) && (cs == -1) /* LC’s */

19 #define ZPr (rr == 0) && (br ==0) && (cr == -1) /* LC’r */

20

21 #define Xs Zs && ZPr

22 #define XPs ZPs && Zr

23 #define Xr Zs && Zr

24 #define XPr ZPs && ZPr

25
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26 bool rs = 1;

27 bool rr = 0;

28 bool bs = 1;

29 bool br = 0;

30

31 bool ypr; /* y’r */

32 bool ys;

33 bool yr;

34 bool yps; /* y’s */

35

36 bool us;

37 bool ur;

38 bool ups; /* u’s */

39 bool upr; /* u’r */

40

41 int cs = -1;

42 int cr = -1;

43

44 proctype sender() {

45 do

46 :: atomic { ((rs == 1)) -> rs = 0; cs = bs ;

47 us =0; ups =0; }

48 :: atomic { (cr != -1) -> rs = 1; cr = -1;

49 bs = (bs+1)%2 ; us =0; ups =0; }

50

51 :: atomic { Zs && !ys && ypr -> ys = 1; }

52 :: atomic { ys -> cs = 1; ys=0; }

53

54 :: atomic { ZPs && !yps && yr -> yps = 1; }

55 :: atomic { yps -> cs = 0; yps=0; }

56

57 :: atomic { Zs && !us -> us = 1; }

58 :: atomic { ZPs && !ups -> ups = 1; }
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59 od;

60 }

61

62 proctype receiver() {

63 do

64 :: atomic { ( cs != -1) -> cs = -1; rr = 1;

65 br = (br+1)%2 ; yr =0; ypr =0; }

66 :: atomic { ( rr == 1) -> rr = 0; cr = br ;

67 yr =0; ypr =0; }

68

69 :: atomic { ZPr && !ypr -> ypr = 1; }

70 :: atomic { Zr && !yr -> yr = 1; }

71

72 :: atomic { Zr && !ur && us -> ur = 1; }

73 :: atomic { ur -> cr = 1; ur=0; }

74

75 :: atomic { ZPr && !upr && ups -> upr = 1; }

76 :: atomic { upr -> cr = 0; upr=0; }

77 od;

78 }

79

80 proctype MessageLossFaults() {

81 if

82 :: ((cs != -1)) -> cs = -1;

83 :: ((cr != -1)) -> cr = -1;

84 :: skip;

85 fi;

86 }

87

88 init{

89 run sender(); run receiver(); run MessageLossFaults();

90 }
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A.2 The Synthesized Intermediate Diffusing Com-

putation Program

In this section, we present the intermediate program that we have synthesized using

FTSyn. This program includes the actions of the high atomicity processes added

for the purpose of adding recovery. FTSyn represents the synthesized program in

a syntax close to the syntax of the Promela modeling language [37]. The semantic

of the output program is based on the Dijkstra’s guarded commands, where each

guarded command grd → st represents a set of transitions {(s0, s1) : grd holds at

s0 and the atomic execution of st at s0 takes the state of the program to s1 }. In the

following program, ci, pi, and sni respectively represent the color, the parent, and the

session number of process Pi. Also, cpi and snpi respectively represent the color and

the session number of the parent of Pi (0 ≤ i ≤ 3).

1 ---------- The actions of Process P0 ----------

2 (c0 == 1) &&

3 ((p0 == 0) && (sn0 == 1)) -> c0 := 0; sn0 := 0;

4

5 (c0 == 1) &&

6 ((p0 == 0) && (sn0 == 0)) -> c0 := 0; sn0 := 1;

7

8 (c0 == 1) &&

9 ( ((c1 == 0) && (c2 == 0) && (sn0 == 1) && (sn1 == 0) &&

10 (sn2 == 0) && ((p0 == 1) || (p0 == 2)) ) ||

11 ((c2 == 0) && (sn0 == 1) && (sn2 == 0) && (p0 == 2) ) ||

12 ((c1 == 0) && (sn0 == 0) && (sn1 == 1) && (p0 == 1) ) ||

13 ((c2 == 0) && (sn0 == 0) && (sn2 == 1) && (p0 == 2) ) ||

14 ((c1 == 0) && (sn0 == 1) && (sn1 == 0) && (p0 == 1) ) ||

15 ((c1 == 0) && (c2 == 0) && (sn0 == 0) && (sn1 == 1) &&

16 (sn2 == 1) && ((p0 == 1) || (p0 == 2))) )

17 -> c0 := cp0; sn0 := snp0;
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18

19 (c0 == 0) &&

20 ( ((c1 == 1) && (c2 == 1) && (sn0 == 0) && (sn1 == 0) && (sn2 == 0)) ||

21 ((c1 == 1) && (c2 == 1) && (sn0 == 1) && (sn1 == 1) && (sn2 == 1)) )

22 -> c0 := 1;

23

24 ---------- The actions of Process P1 ----------

25

26 (c1 == 1) &&

27 ( ((cp1 == 0) && (sn1 == 0) && (snp1 == 1)) ||

28 ((cp1 == 0) && (sn1 == 1) && (snp1 == 0)) )

29 -> c1 := cp1; sn1 := snp1;

30

31 (c1 == 0) && ((sn1 == 1) || (sn1 == 0)) -> c1 := 1;

32

33 ---------- The actions of Process P2 ----------

34

35 (c2 == 1) &&

36 ( ((cp2 == 0) && (sn2 == 0) && (snp2 == 1)) ||

37 ((cp2 == 0) && (sn2 == 1) && (snp2 == 0)) )

38 -> c2 := cp2; sn2 := snp2;

39

40 (c2 == 0) &&

41 ( ((sn2 == 0) && (c3 == 1) && (sn3 == 0) && (p3 == 2)) ||

42 ((sn2 == 1) && (c3 == 1) && (sn3 == 1) && (p3 == 2)) )

43 -> c2 := 1;

44

45 ---------- The actions of Process P3 ----------

46

47 (c3 == 1) &&

48 ( ((cp3 == 0) && (sn3 == 0) && (snp3 == 1)) ||

49 ((cp3 == 0) && (sn3 == 1) && (snp3 == 0)) )

50 -> c3 := cp3; sn3 := snp3;
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51

52 (c3 == 0) &&

53 ((sn3 == 0) || (sn3 == 1)) -> c3 := 1;

54

55

56 ---------- The actions of the high atomicity Process 0 ----------

57

58 (c0 == 1) &&

59 ( ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 1) && (sn3 == 0) &&

60 ((p0 == 2) || (p0 == 1)) && (p1 == 0) && (p2 == 0) && (p3 == 2) ) ||

61 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 1) && (sn1 == 0) &&

62 ((p0 == 2) || (p0 == 1)) && (p1 == 0) && (p2 == 0) && (p3 == 2) ) ||

63 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 1) && (sn2 == 0) &&

64 ((p0 == 2) || (p0 == 1)) && (p1 == 0) && (p2 == 0) && (p3 == 2)) )

65 -> sn.0 := 0;

66

67 (c0 == 1) &&

68 ( ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn1 == 0) &&

69 (sn2 == 0) && (sn3 == 0) && ((p0 == 2) || (p0 == 1)) && (p1 == 0) &&

70 (p2 == 0) && (p3 == 2) ) ||

71 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 1) && (sn1 == 1) &&

72 (sn2 == 1) && (sn3 == 1) && ((p0 == 1) || (p0 == 2)) && (p1 == 0) &&

73 (p2 == 0) && (p3 == 2)) ) -> p0 := 0;

74

75 (c0 == 1) &&

76 ( ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn1 == 0) &&

77 (sn2 == 1) && (p0 == 2) && (p1 == 0) && (p2 == 0) && (p3 == 2)) ||

78 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn1 == 1) &&

79 (sn2 == 0) && (p0 == 2) && (p1 == 0) && (p2 == 0) && (p3 == 2)) ||

80 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn2 == 0) &&

81 (sn3 == 1) && (p0 == 2) && (p1 == 0) && (p2 == 0) && (p3 == 2)) ||

82 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn1 == 1) &&

83 (sn3 == 0) && (p0 == 2) && (p1 == 0) && (p2 == 0) && (p3 == 2)) ||
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84 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn2 == 1) &&

85 (sn3 == 0) && (p0 == 2) && (p1 == 0) && (p2 == 0) && (p3 == 2)) ||

86 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn1 == 0) &&

87 (sn3 == 1) && (p0 == 2) && (p1 == 0) && (p2 == 0) && (p3 == 2)) )

88 -> p0 := 1;

89

90 (c0 == 1) &&

91 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn1 == 1) &&

92 (sn2 == 1) && (sn3 == 1) && ((p0 == 2) || (p0 == 1)) && (p1 == 0) &&

93 (p2 == 0) && (p3 == 2)) ) -> c0 := 1; sn0 :=1; p0 := 0;

94

95 ---------- The actions of the high atomicity Process 1 ----------

96

97 (c0 == 1) &&

98 ( (c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn1 == 1) &&

99 (sn2 == 0) && (sn3 == 0) && (p0 == 1) && (p1 == 0) && (p2 == 0) &&

100 (p3 == 2) ) -> sn1 := 0;

101

102 (c0 == 1) &&

103 ( ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn1 == 0) &&

104 (sn2 == 1) && (p0 == 1) && (p1 == 0) && (p2 == 0) && (p3 == 2)) ||

105 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn1 == 0) &&

106 (sn3 == 1) && (p0 == 1) && (p1 == 0) && (p2 == 0) && (p3 == 2)) )

107 -> sn1 := 1;

108

109

110 ---------- The actions of the high atomicity Process 2 ----------

111

112 (c0 == 1) &&

113 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn1 == 1) &&

114 (sn2 == 0) && (sn3 == 1) && (p0 == 1) && (p1 == 0) && (p2 == 0) &&

115 (p3 == 2)) ) -> sn2 := 1;

116
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117 ---------- The actions of the high atomicity Process 3 ----------

118

119 (c0 == 1) &&

120 ((c1 == 1) && (c2 == 1) && (c3 == 1) && (sn0 == 0) && (sn1 == 1) &&

121 (sn2 == 1) && (sn3 == 0) && (p0 == 1) && (p1 == 0) && (p2 == 0) &&

122 (p3 == 2)) -> sn3 := 1;

A.3 The Actions of the Synthesized Diffusing Com-

putation Program

In this section, we present the actions of processes P2 and P3 in the DC program

(from Section 6.6.2). These actions construct the actions of the synthesized program.

We presented the actions of P0 in Section 6.6.2.

DC31 : (c3 = 1) ∧ (par3 = 3) −→ c3 := 0; sn3 = ¬sn3;

y3 := false; y2 := false;

if ((sn3 = 1) ∧ (y′
3 = true))

then y′
3 := false; y′

2 := false

DC32 : (c3 = 1) ∧ (cpar3 = 0) ∧ (sn3 6≡ snpar3) −→ c3 := cpar3 ; sn3 = snpar3 ;

if ((c3 = 0) ∧ (y3 = true))

then y3 := false; y2 := false;

if ((sn3 = 1) ∧ (y′
3 = true))

then y′
3 := false; y′

2 := false;

DC33 : (c3 = 0) ∧ (∀k :: pk = 3 ⇒ (ck = 1 ∧ sn3 ≡ snk)) −→ c3 := 1;

D31 : (c3 = 1) ∧ (c2 = 1) ∧ (y3 = false) −→ y3 := true;

D′
31 : (sn3 = 0) ∧ (c2 = 1) ∧ (y′

3 = false) −→ y′
3 := true;

Note that, in action DC31, our synthesis method has added new statements to

the statements of the first action in the fault-intolerant DC program. These new
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statements falsify the witness predicates of the detectors. For example, when c3

becomes 0 the state predicate LC3 no longer holds. Thus, the witness predicate y3

must be falsified to ensure the interference-freedom of the program and the pres-

synthesized detectors. Now, we present the actions of process P2 composed with the

detectors d2 and d′
2.

DC21 : (c2 = 1) ∧ (par2 = 2) −→ c2 := 0; sn2 = ¬sn2;

y2 := 0; y0 := 0;

if ((y′
3 = false) ∧ (sn2 = 1)

∧((y′
2 = true) ∨ (y′

0 = true)))

then y′
2 := false; y′

0 := false;

DC22 : (c2 = 1) ∧ (cpar2 = 0) ∧ (sn2 6≡ snpar2)

−→ c2 := cpar2 ; sn2 = snpar2 ;

if ((c2 = 1) ∨ (y3 = false))

∧((y2 = true) ∨ (y0 = true)))

then y2 := false; y0 := false;

if ((sn2 = 1) ∨ (y′
3 = false))

∧((y′
2 = true) ∨ (y′

0 = true)))

then y′
2 := false; y′

0 := false;

DC23 : (c2 = 0) ∧ (∀k :: pk = 2 ⇒ (ck = 1 ∧ sn2 ≡ snk))

−→ c2 := 1;

if (y3 = false)) ∧

((y2 = true) ∨ (y0 = true)))

then y2 := false; y0 := false;

if (y′
3 = false)) ∧

((y′
2 = true) ∨ (y′

0 = true)))

then y′
2 := false; y′

0 := false;

D21 : (y3 = true) ∧ (c2 = 1) ∧ (sn0 = 1) ∧ (c0 = 1) ∧((par0 = 2) ∨ (par0 = 1)) ∧ (y2 = false)

−→ y2 := true;

D′
21 : (y′

3 = true) ∧ (c2 = 1) ∧ (sn0 = 1) ∧ (c0 = 1) ∧((par0 = 2) ∨ (par0 = 1)) ∧ (y′
2 = false)

−→ y′
2 := true;
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A.4 The Promela Model of the Synthesized Diffus-

ing Computation Program

In this section, we present the Promela model of the synthesized diffusing computation

program where we verify the nonmasking fault-tolerance property of the synthesized

program. Although the synthesized program is correct by construction, we have con-

ducted this formal verification in order to gain more confidence in the implementation

of FTSyn.

1 #define inv

2 (((

3 (((c[0] == c[p0]) && (c[4] == c[p0+4])) || ((c[0] ==1) && (c[p0] == 0)))&&

4 (((c[1] == c[p1]) && (c[5] == c[p1+4])) || ((c[1] ==1) && (c[p1] == 0)))&&

5 (((c[2] == c[p2]) && (c[6] == c[p2+4])) || ((c[2] ==1) && (c[p2] == 0)))&&

6 (((c[3] == c[p3]) && (c[7] == c[p3+4])) || ((c[3] ==1) && (c[p3] == 0)))

7 )) &&

8 ((p0 ==0) && (p1 == 0) && (p2 == 0) && (p3 == 2)) )

9

10 #define safety0 (!Z0 || X0)

11 #define safety0p (!Z0p || X0p)

12

13 #define safety2 (!Z2 || X2)

14 #define safety2p (!Z2p || X2p)

15

16 #define safety3 (!Z3 || X3)

17 #define safety3p (!Z3p || X3p)

18

19 #define X0 (c[3] == 1) && (c[1] == 1) && (c[2] == 1) && (c[0] == 1) &&

20 ( c[4] == 1 ) && ((p0 == 2 ) || (p0 == 1))

21 #define Z0 (y0 == 1)

22

23 #define X0p (c[7] == 0) && (c[1] == 1) && (c[2] == 1) && (c[0] == 1) &&
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24 ( c[4] == 1 ) && ((p0 == 2 ) || (p0 == 1))

25 #define Z0p (y0p == 1)

26

27

28 #define X2 (c[3] == 1) && (c[2] == 1) && (c[4] == 1) && (c[0] == 1) &&

29 ((p0 == 2 ) || (p0 == 1))

30 #define Z2 (y2 ==1)

31

32 #define X2p (c[7] == 0) && (c[2] == 1) && (c[4] == 1) && (c[0] == 1) &&

33 ((p0 == 2 ) || (p0 == 1))

34 #define Z2p (y2p == 1)

35

36 #define X3 (c[3] == 1) && (c[2] == 1)

37 #define Z3 (y3 ==1)

38

39 #define X3p (c[7] == 0) && (c[2] == 1)

40 #define Z3p (y3p ==1)

41

42 /* Properties to be verified

43 [] safety

44 [] (!inv -> <> inv)

45 [] (<> inv)

46 */

47

48 bool c[8];

49 bool y3 =0, y2=0, y3p=0, y2p=0, y0 =0, y0p =0;

50

51 /* The cells of this array respectively represent

52 c0, c1, c2, c3, sn0, sn1, sn2, sn3

53 // c0 ---> c[0]

54 // c1 ---> c[1]

55 // c2 ---> c[2]

56 // c3 ---> c[3]
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57 // sn0 ---> c[4]

58 // sn1 ---> c[5]

59 // sn2 ---> c[6]

60 // sn3 ---> c[7]

61 */

62

63 int p0 = 0;

64 int p1 = 0;

65 int p2 = 0;

66 int p3 = 2;

67

68 proctype P0() {

69 do

70 :: atomic{ ((c[0] ==1) && (p0 == 0) ) -> c[0] = 0; c[4] = !c[4];

71 y0 = 0; y0p =0; }

72

73 :: atomic{ ((c[0] == 1) && (c[p0] == 0) && (c[4] != c[p0+4])) ->

74 { c[0] = c[p0]; c[4] = c[p0+4];

75 if :: (c[0] == 0) && (y0 ==1) -> y0 = 0; y0p =0;

76 :: else skip;

77 fi; }

78 }

79

80 :: atomic{ ((c[0] == 0) && ((p1 != 0) || ((c[1] == 1) &&

81 (c[4] == c[5] ))) && ((p2 != 0) || ((c[2] == 1) &&

82 (c[4] == c[6])) ) ) -> { c[0] = 1;

83 if :: (y2 == 0) && (y0 ==1) -> y0 =0;

84 :: else skip;

85 fi;

86 if :: (y2p == 0) && (y0p ==1)-> y0p =0;

87 :: else skip;

88 fi;

89 }
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90 }

91 /* component-based actions of P0 */

92

93 :: atomic { ( ( y0 == 1 ) &&

94 ( ( y0p == 1 ) ||( c[5] == 0 ) ||( c[6] == 0 )) ) -> c[4] = 0;

95 y0 =0; y0p = 0; y2 =0; y2p = 0; }

96

97 :: atomic { (y2 == 1) && ( c[1] == 1 ) && (c[2] == 1) &&

98 (c[0] == 1) && ( c[4] == 1 ) &&

99 ((p0 == 2 ) || (p0 == 1)) && (y0 == 0) -> y0 = 1; }

100

101 :: atomic { (y2p == 1) && ( c[1] == 1 ) && (c[2] == 1) &&

102 (c[0] == 1) && ( c[4] == 1 ) &&

103 ((p0 == 2 ) || (p0 == 1)) && (y0p == 0) -> y0p = 1; }

104 od;

105 }

106

107 proctype P1() {

108 do

109 :: atomic { ((c[1] ==1) && (p1 == 1) ) -> c[1] = 0; c[5] = !c[5]; }

110 :: atomic { ((c[1] == 1) && (c[p1] == 0) && (c[5] != c[p1+4]) )

111 -> c[1] = c[p1]; c[5] = c[p1+4]; }

112 :: atomic { (c[1] == 0) -> c[1] = 1; }

113 od;

114 }

115

116 proctype P2() {

117 do

118 :: atomic{ ((c[2] ==1) && (p2 == 2) ) -> { c[2] = 0; c[6]= !c[6];

119 y2 =0; y0 =0; y3 =0; y3p =0;

120 if :: ((y3p == 0) && (c[6] == 1)) && ((y2p ==1)|| (y0p ==1))

121 -> y2p =0; y0p =0; y3p =0;

122 :: else skip;
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123 fi;

124 }

125 }

126

127 :: atomic { ((c[2] == 1) && (c[p2] == 0) && (c[6] != c[p2+4]))

128 -> { c[2] = c[p2]; c[6] = c[p2+4];

129 if :: ((c[2] == 0) || (y3 == 0)) &&

130 ((y2 ==1) || (y0 ==1) || (y3 ==1))

131 -> y2 =0; y0 =0; y3 =0;

132 :: else skip;

133 fi;

134 if :: ((y3p == 0) || (c[7] == 1) || (c[3] == 0) ||

135 (c[2] == 0)) && ((y2p ==1)|| (y0p ==1)|| (y3p ==1))

136 -> y2p =0; y0p =0; y3p =0;

137 :: else skip;

138 fi;

139 }

140 }

141

142 :: atomic { ((c[2] == 0) && ((p3 != 2) ||

143 ((c[3] == 1) && (c[7] == c[6])))) -> { c[2] = 1;

144 if :: (y3 == 0) && ((y2 ==1)||(y0 ==1)) -> y2 =0; y0 =0; y3 =0;

145 :: else skip;

146 fi;

147 if :: (y3p == 0)&&((y2p ==1)||(y0p ==1))-> y2p =0; y0p =0; y3p =0;

148 :: else skip;

149 fi;

150 }

151 }

152

153 :: atomic { (y3 == 1) && (c[2] == 1) && (c[4] == 1) &&

154 (c[0] == 1) && ((p0 == 2 ) || (p0 == 1)) &&

155 (y2 == 0) -> y2 = 1; }
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156

157 :: atomic { (y3p == 1) && (c[2] == 1) && (c[4] == 1) &&

158 (c[0] == 1) && ((p0 == 2 ) || (p0 == 1)) &&

159 (y2p == 0) -> y2p = 1; }

160 od;

161 }

162

163 proctype P3() {

164 do

165 :: atomic { ((c[3] ==1) && (p3 == 3) ) -> { c[3] = 0; c[7] = !c[7];

166 y3 = 0; y2 = 0;

167

168 if :: ((c[7] == 1) || (c[2] ==0)) && (y3p ==1) -> y3p =0; y2p =0;

169 :: else skip;

170 fi;

171 }

172 }

173

174

175

176 :: atomic { ((c[3] == 1) && (c[p3] == 0) && (c[7] != c[p3+4]))

177 -> { c[3] = c[p3]; c[7] = c[p3+4];

178 if :: ((c[3] == 0) || (c[2] ==0)) && (y3 ==1) -> y3 = 0; y2 =0;

179 :: else skip;

180 fi;

181 if :: ((c[7] == 1) || (c[2] ==0)) && (y3p ==1)-> y3p =0; y2p =0;

182 :: else skip;

183 fi;

184 }

185 }

186

187 :: atomic { (c[3] == 0) -> { c[3] = 1;

188 if :: ((c[7] == 1) || (c[2] ==0)) && (y3p ==1)-> y3p =0; y2p =0;
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189 :: else skip;

190 fi;

191 }

192 }

193

194 :: atomic { (c[3] == 1) && (c[2] == 1) &&

195 ((c[6] ==0) || (c[7] ==0)) && (y3 == 0) -> y3 = 1; }

196

197 :: atomic { (c[7] == 0) && (c[2] == 1) && (y3p == 0)-> y3p = 1; }

198 od;

199 }

200

201

202

203

204 proctype Pseudo0() {

205 do

206 /* This high atomicity recovery action has been refined by adding

207 the pre-synthesized components. Thus, we comment it out.

208 :: atomic { ( c[0] == 1) &&

209 ( ( ( c[1] == 1 ) && ( c[2] == 1 ) && ( c[3] == 1 ) && ( c[4] == 1 ) &&

210 ( ( p0 == 2 ) || ( p0 == 1 ) ) ) &&

211 (( c[7] == 0 ) || ( c[5] == 0 ) || ( c[6] == 0 )) ) -> c[4] = 0; }

212 */

213 :: atomic{ ((c[0] == 1) && (c[1] == 1) && (c[2] == 1) &&

214 (c[3] == 1) && ((p0 == 2) || (p0 == 1)) ) &&

215 (

216 ((c[4] == 0) && (c[5] == 0) && (c[6] == 0) && (c[7] == 0)) ||

217 ((c[4] == 1) && (c[5] == 1) && (c[6] == 1) && (c[7] == 1))

218 )

219 -> p0 = 0; }

220

221 :: atomic {
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222 (c[0] == 1) && (c[1] == 1 ) && (c[2] == 1) && (c[3] == 1) &&

223 (c[4] == 0) && (p0 == 2) &&

224 (

225 ((c[4] == 0) && (c[5] == 0) && (c[6] == 1)) ||

226 ((c[4] == 0) && (c[5] == 1) && (c[6] == 0)) ||

227 ((c[4] == 0) && (c[5] == 0) && (c[7] == 1)) ||

228 ((c[4] == 0) && (c[5] == 1) && (c[7] == 0)) ||

229 ((c[4] == 0) && (c[6] == 1) && (c[7] == 0)) ||

230 ((c[4] == 0) && (c[5] == 0) && (c[7] == 1))

231 ) -> p0 = 1; }

232

233 :: atomic {

234 (c[0] == 1) &&

235 ((c[1] == 1) && (c[2] == 1) && (c[3] == 1) &&

236 (c[4] == 0)&& (c[5] == 1) && (c[6] == 1) &&

237 (c[7] == 1) && ((p0 == 2) || (p0 == 1)) )

238 -> c[0] =1; c[4] = 1; p0 = 0;

239 }

240 od;

241 }

242

243 proctype Pseudo1() {

244 do

245 :: atomic {

246 (c[0] == 1) &&

247 ((c[1] == 1) && (c[2] == 1) && (c[3] == 1) &&

248 (c[4] == 0) && (c[5] == 1) && (c[6] == 0) &&

249 (c[7] == 0) && (p0 == 1) && (p1 == 0) &&

250 (p2 == 0) && (p3 == 2)) -> c[5] =0;

251 }

252

253 :: atomic{(c[0] == 1) && (c[1] == 1) && (c[2] == 1) &&

254 (c[3] == 1)&& (c[4] == 0) && (c[5] == 0) &&
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255 (p0 == 1) && ((c[6] == 1) || (c[7] == 1))

256 -> c[5] = 1; }

257 od;

258 }

259

260 proctype Pseudo2() {

261 do

262 :: atomic {(c[0] == 1) && (c[1] == 1) && (c[2] == 1) &&

263 (c[3] == 1) && (c[4] == 0) && (c[5] == 1) &&

264 (c[6] == 0) && (c[7] == 1) && (p0 == 1)

265 -> { c[6] = 1;

266 }

267 }

268 od;

269 }

270

271 proctype Pseudo3() {

272 do

273 :: atomic { (c[0] == 1) && (c[1] == 1) && (c[2] == 1) &&

274 (c[3] == 1) && (c[4] == 0) && (c[5] == 1) &&

275 (c[6] == 1) && (c[7] == 0) && (p0 == 1) &&

276 (p1 == 0) && (p2 == 0) && (p3 == 2)

277 -> c[7] = 1;

278 }

279 od;

280 }

281

282 proctype Faults() {

283 if

284 :: atomic { (true) -> c[0] = 0; }

285 :: atomic { (true) -> c[0] = 1; }

286 :: atomic { (true) -> c[1] = 0; }

287 :: atomic { (true) -> c[1] = 1; }
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288

289 :: atomic { (true) -> c[2] = 0; }

290 :: atomic { (true) -> c[2] = 1; }

291 :: atomic { (true) -> c[3] = 0; }

292 :: atomic { (true) -> c[3] = 1; }

293

294 :: atomic { (true) -> c[4] = 0; }

295 :: atomic { (true) -> c[4] = 1; }

296 :: atomic { (true) -> c[5] = 0; }

297 :: atomic { (true) -> c[5] = 1; }

298

299 :: atomic { (true) -> c[6] = 0; }

300 :: atomic { (true) -> c[6] = 1; }

301 :: atomic { (true) -> c[7] = 0; }

302 :: atomic { (true) -> c[7] = 1; }

303

304 :: atomic{ (true) -> p0 = 0; }

305 :: atomic{ (true) -> p0 = 1; }

306 :: atomic{ (true) -> p0 = 2; }

307 fi;

308

309 }

310

311 init{

312 run Faults();

313 run P0(); run P1(); run P2(); run P3();

314 run Pseudo0(); run Pseudo1();

315 run Pseudo2();

316 run Pseudo3();

317 }
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Appendix B: Agreement in the

Presence of Byzantine and Failstop

Faults

In this section, we present a comprehensive example of adding fault-tolerance to a

fault-intolerant program using our framework. Specifically, we show how developers

of fault-tolerance can interact with our framework, FTSyn, in order to add masking

fault-tolerance to an agreement program. This example may be thought of as a brief

version of the user manual for our framework. A more detailed user manual including

the source code is available at [73].

The fault-intolerant program consists of a general process and four non-general

processes that are perturbed by Byzantine and fail-stop faults. The user should

specify the input fault-intolerant program, its variables, its invariant, its specification,

and the faults in a text file. The input file of the agreement program is as follows:

1 program Byzantine-Failstop

2 var

3 bool bi;

4 bool bj;

5 bool bk;

6 bool bl;

7 bool bg;

8
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9 int dg=0, domain 0 .. 1;

10 int di, domain -1 .. 1;

11 // (di == -1) means process $i$ has not yet decided.

12 int dj, domain -1 .. 1;

13 int dk, domain -1 .. 1;

14 int dl, domain -1 .. 1;

15

16 bool fi;

17 bool fj;

18 bool fk;

19 bool fl;

20

21 bool upi;

22 bool upj;

23 bool upk;

24 bool upl;

25

26 // The structure of process i.

27 process i

28 begin

29 ((di == -1) && (fi == 0) && (upi == 0)) -> di = dg ;

30 |

31 ((di != -1) && (fi == 0) && (upi == 0)) -> fi = 1 ;

32

33 read di, dj, dk, dl, dg, fi, upi, bi;

34 write di, fi;

35 end

36

37 // The structure of process j.

38 process j

39 begin

40 ((dj == -1) && (fj == 0) && (upj == 0)) -> dj = dg;

41 |
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42 ((dj != -1) && (fj == 0) && (upj == 0)) -> fj = 1;

43

44 read di, dj, dk, dl, dg, fj, upj, bj;

45 write dj, fj;

46 end

47

48 // The structure of process k.

49 process k

50 begin

51 ((dk == -1) && (fk == 0) && (upk == 0)) -> dk = dg;

52 |

53 ((dk != -1) && (fk == 0) && (upk == 0)) -> fk = 1;

54

55 read di, dj, dk, dl, dg, fk, upk, bk;

56 write dk, fk;

57 end

58

59 // The structure of process l.

60 process l

61 begin

62 ((dl == -1) && (fl == 0) && (upl == 0)) -> dl = dg;

63 |

64 ((dl != -1) && (fl == 0) && (upl == 0)) -> fl = 1;

65

66 read di, dj, dk, dl, dg, fl, upl, bl;

67 write dl, fl;

68 end

69

70 // Faults are represented as a process.

71

72 fault FailstopAndByzantine

73 begin

74 ((upi == 1)&&(upj == 1)&&(upk == 1)&&(upl == 1))

256



75 -> upi = 0, upj = 0, upk = 0, upl = 0 ,

76 |

77 ((bi == 0)&&(bj == 0)&&(bk == 0)&&(bl == 0)&&(bg == 0))

78 -> bi = 1, bj = 1, bk = 1, bl = 1, bg = 1,

79 |

80 ((bi == 1)) -> di = 1 , di =0 ,

81 |

82 ((bj == 1)) -> dj = 1 , dj =0 ,

83 |

84 ((bk == 1)) -> dk = 1 , dk =0 ,

85 |

86 ((bl == 1)) -> dl = 1 , dl =0 ,

87 |

88 ((bg == 1)) -> dg = 1 , dg =0 ,

89 end

90

91 // The invariant of the program.

92 invariant

93 ( (

94 ((bg==0) &&

95 (((bi == 1) && (bj == 0)&& (bk == 0)&& (bl == 0)) ||

96 ((bj == 1) && (bi == 0)&& (bk == 0)&& (bl == 0)) ||

97 ((bk == 1) && (bj == 0)&& (bi == 0)&& (bl == 0)) ||

98 ((bl == 1) && (bj == 0)&& (bk == 0)&& (bi == 0)) ||

99 ((bi == 0) && (bj == 0)&& (bk == 0)&& (bl == 0)) ) &&

100 ((bi==1)||(di==-1)||(di==dg))&&

101 ((bj==1)||(dj==-1)||(dj==dg))&&

102 ((bk==1)||(dk==-1)||(dk==dg))&&

103 ((bl==1)||(dl==-1)||(dl==dg))&&

104 ((bi==1)||(fi==0)||(di!=-1) )&&

105 ((bj==1)||(fj==0)||(dj!=-1) )&&

106 ((bk==1)||(fk==0)||(dk!=-1) )&&

107 ((bl==1)||(fl==0)||(dl!=-1) ) ) ||
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108

109 ((bg==1)&& (bi==0)&&(bj==0)&&(bk==0)&&(bl==0)&& (

110 ((((upi == 1) && (upj == 1)&& (upk == 1)&& (upl == 1))) &&

111 ((di==dj)&&(dj==dk)&&(dk==dl)&&(di!=-1)) ) ||

112 ((((upi == 1) && (upj == 1)&& (upk == 1)&& (upl == 0))) &&

113 ((di==dj)&&(dj==dk)&&(di!=-1)) ) ||

114 ((((upi == 1) && (upj == 1)&& (upk == 0)&& (upl == 1))) &&

115 ((di==dj)&&(dj==dl)&&(di!=-1)) ) ||

116 ((((upi == 1) && (upj == 0)&& (upk == 1)&& (upl == 1))) &&

117 ((di==dk)&&(dk==dl)&&(di!=-1)) ) ||

118 ((((upi == 0) && (upj == 1)&& (upk == 1)&& (upl == 1))) &&

119 ((dj==dk)&&(dk==dl)&&(dj!=-1)) )

120 ))

121 )

122 &&

123 (

124 ((upi == 0) && (upj == 1) && (upk ==1) && (upl == 1)) ||

125 ((upi == 1) && (upj == 0) && (upk ==1) && (upl == 1)) ||

126 ((upi == 1) && (upj == 1) && (upk ==0) && (upl == 1)) ||

127 ((upi == 1) && (upj == 1) && (upk ==1) && (upl == 0)) ||

128 ((upi == 1) && (upj == 1) && (upk ==1) && (upl == 1)) ))

129

130 // The specification of the program is specified in three parts starting

131 // with specification keyword.

132

133 specification

134

135 // The destination part identifies a set of states that every

136 // transition reaching them violates safety.

137

138 destination

139 (

140 ( (bid == 0) && (bjd == 0) && (upid == 1) && (upjd == 1) && (did != -1) &&
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141 (djd != -1) && (did != djd) && (fid == 1) && (fjd == 1)) ||

142 ( (bid == 0) && (bkd == 0) && (upid == 1) && (upkd == 1) && (did != -1) &&

143 (dkd != -1) && (did != dkd) && (fid == 1) && (fkd == 1)) ||

144 ( (bid == 0) && (bld == 0) && (upid == 1) && (upld == 1) && (did != -1) &&

145 (dld != -1) && (did != dld) && (fid == 1) && (fld == 1)) ||

146 ( (bjd == 0) && (bkd == 0) && (upkd == 1) && (upjd == 1) && (djd != -1) &&

147 (dkd != -1) && (djd != dkd) && (fjd == 1) && (fkd == 1)) ||

148 ( (bjd == 0) && (bld == 0) && (upld == 1) && (upjd == 1) && (djd != -1) &&

149 (dld != -1) && (djd != dld) && (fjd == 1) && (fld == 1)) ||

150 ( (bkd == 0) && (bld == 0) && (upkd == 1) && (upld == 1) && (dkd != -1) &&

151 (dld != -1) && (dkd != dld) && (fkd == 1) && (fld == 1)) ||

152

153 ((bgd == 0) && (bid == 0) && (did != -1) && (did != dgd) && (fid == 1)) ||

154 ((bgd == 0) && (bjd == 0) && (djd != -1) && (djd != dgd) && (fjd == 1)) ||

155 ((bgd == 0) && (bkd == 0) && (dkd != -1) && (dkd != dgd) && (fkd == 1)) ||

156 ((bgd == 0) && (bld == 0) && (dld != -1) && (dld != dgd) && (fld == 1))

157 )

158

159 // The relation part identifies a set of transitions that violate safety.

160

161 relation

162 ((((bis == 0)&& (bid == 0) && (fis == 1) && (dis != did))) ||

163 (((bjs == 0) && (bjd == 0) && (fjs == 1) && (djs != djd)))||

164 (((bks == 0) && (bkd == 0) && (fks == 1) && (dks != dkd)))||

165 (((bls == 0) && (bld == 0) && (fls == 1) && (dls != dld)))||

166 (((bis == 0) && (bid == 0) && (fis == 1) && (fid == 0)))||

167 (((bjs == 0) && (bjd == 0) && (fjs == 1) && (fjd == 0)))||

168 (((bks == 0) && (bkd == 0) && (fks == 1) && (fkd == 0)))||

169 (((bls == 0) && (bld == 0) && (fls == 1) && (fld == 0))))

170

171 // The init section is used for specifying the initial states.

172

173 init
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174

175 // Each initial state is specified using the state keyword.

176

177 state

178 bi = 0; bj = 0; bk = 0; bl = 0; bg = 0; dg = 0;

179 di = -1; dj = -1; dk = -1; bl = -1;

180 fi = 0; fj = 0; fk = 0; fl = 0; upi = 1; upj = 1;

181 upk = 1; upl = 1;

182

183

184 state

185 bi = 0; bj = 0; bk = 0; bl = 0; bg = 0; dg = 1;

186 di = -1; dj = -1; dk = -1; bl = -1;

187 fi = 0; fj = 0; fk = 0; fl = 0; upi = 1; upj = 1;

188 upk = 1; upl = 1;

189

B.1 The Description of the Input File

The fault-intolerant agreement program consists of four non-general processes

Pi, Pj, Pk, Pl and a general Pg. Each non-general process has four variables d, f, b,

and up. Variable di represents the decision of a non-general process Pi, fi denotes

whether Pi has finalized its decision, bi denotes whether Pi is Byzantine or not, and

upi states whether Pi has failed or not. Process Pg also has variables dg and bg. We

assume that the process Pg never fails. Thus, the variables of the agreement program

are as shown in the var section (cf. Lines 2-24).

Transitions of the fault-intolerant program. If process Pi has not copied a

value from the general and Pi has not failed (i.e., upi = 1) then Pi copies the decision

of the general (first action in the body of process Pi (cf. Line 29)). If Pi has copied a

decision and as a result di is different from -1 then Pi can finalize its decision if it has
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not failed (second action in the body of process Pi (cf. Line 31)). Other non-general

processes (Pj, Pk, and Pl) have a similar structure as shown in the input file (cf. Lines

37-68).

Read/Write restrictions. Each non-general process Pi is allowed to read

{di, dj, dk, dl, dg, fi, upi, bi}. Thus, Pi can read the d values of other processes and all

its variables. The set of variables that Pi can write is {di, fi}. Read/write restrictions

of each process are specified in its body after the program actions (using read and

write keywords (e.g., Lines 33-34)).

Faults. A Byzantine fault transition can cause a process to become Byzantine

if no process is initially Byzantine. A Byzantine process can arbitrarily change its

decision (i.e., the value of d). Moreover, the program is subject to fail-stop faults

such that at most one of the non-general processes can be failed, and as a result, it

will stop executing any action. The developers of fault-tolerance should specify the

faults similar to an independent process that can perturb program variables (cf. Lines

72-89).

Invariant. The developers of fault-tolerance our framework should represent the

invariant of the program as a state predicate. In particular, the invariant is a Boolean

function (over program variables) that takes a state s and identifies whether s is an

invariant state or not.

In the agreement program, the bg variable partitions the invariant into two parts:

the set of states where Pg is non-Byzantine (cf. Line 94), and the set of states where

Pg is Byzantine (cf. Line 109). When Pg is non-Byzantine, at most one of the non-

generals could be Byzantine (cf. Lines 95-107). Also, for every non-general process

Pi that is non-Byzantine (i) Pi has not yet decided or it has copied the value of dg (cf.

Lines 100-103), and (ii) Pi has not yet finalized or Pi has decided (cf. Lines 104-107).

When Pg becomes Byzantine, all the non-general processes are non-Byzantine and

all the processes that have not failed agree on the same decision (cf. Lines 109-119).
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The invariant of the agreement program stipulates the above conditions on the states

where at most one non-general process has failed (cf. Lines 124-128).

Safety specification. The safety specification requires that if Pg is Byzantine, all

the non-general non-Byzantine processes that have not failed should finalize with the

same decision (agreement). If Pg is not Byzantine, then the decision of every finalized

non-general non-Byzantine process should be the same as dg (validity). Thus, safety

is violated if the program executes a transition that satisfies at least one of the

conditions specified in the specification section of the input file (cf. Lines 133-169).

The specification section is divided into two parts: destination and relation parts.

Intuitively, in the destination part (cf. Lines 138-158), we write a state predicate that

identifies a set of states sdestination, where if a transition t reaches sdestination then t

violates safety. In the relation part (cf. Lines 162-169), we specify a condition that

identifies a set of transitions that should not be executed by the program. Note,

that we have added a suffix “d” (respectively, suffix “s”) to the variable names in

the specification section that stands for destination (respectively, source ). Since the

relation condition specifies a set of transitions tspec using their source and destination

states, we need to distinguish between the value of a specific variable x in the source

state of tspec (i.e., xs means the value of x in the source state of tspec) and in the

destination state of tspec (i.e., xd means the value of x in the destination state of

tspec).

In the case that the program specification does not stipulate any destination con-

dition on safety-violating transitions, we leave the destination section empty with the

keyword noDestination . We use similar keyword noRelation for the case where we

do not have relation conditions in the specification.

Initial states. The keyword init (cf. Line 173) identifies the section of the input

file where the user has to specify some initial states. These initial states should belong

to the invariant. For each initial state, the user should use the reserved word state (cf.
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Line 177). In the state section (cf. Lines 177-181 and 185-188), the user should assign

some values to the program variables that belong to their corresponding domain.

B.2 The Output of the Framework

In this section, we present the output of the synthesis framework. In particular, we

present the actions of other non-general processes. Observe that the structures of the

non-generals are not symmetric.

In the rest of this section, we describe the structure of each non-general process

that is subject to Byzantine and fail-stop faults. Note that each non-general process

can take an action if and only if it has not yet finalized and also has not failed due

to fail-stop faults.

The description of process Pi. Process Pi of the fault-tolerant agreement

program consists of 5 actions. We describe each action as a separate item.

1. If process Pi has not yet decided then it performs one of the following actions:

either Pi copies the decision of the general, or if at least two other non-generals

have decided on the same value then Pi copies their decision.

1 (di == -1) && (

2 ((dk == 0)&&(dl == 0)&&(fi == 0)&&(upi == 1)) ||

3 ((dg == 0)&&(fi == 0)&&(upi == 1)) ||

4 ((dj == 0)&&(dl == 0)&&(fi == 0)&&(upi == 1)) ||

5 ((dj == 0)&&(dk == 0)&&(fi == 0)&&(upi == 1)) ) -> set_di_val0

6

7 (di == -1) && (

8 ((dk == 1)&&(dl == 1)&&(fi == 0)&&(upi == 1)) ||

9 ((dg == 1)&&(fi == 0)&&(upi == 1)) ||

10 ((dj == 1)&&(dl == 1)&&(fi == 0)&&(upi == 1)) ||

11 ((dj == 1)&&(dk == 1)&&(fi == 0)&&(upi == 1)) ) -> set_di_val1
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2. If process Pi has copied 1, and at least one of the following conditions holds

then process Pi changes its decision to 0: (i) Pk and Pl have decided on 0 and

Pj has decided; (ii) Pj and Pl have decided on 0, or (iii) Pj and Pk have decided

on 0 and Pl has decided.

1 (di == 1) && (

2 (((dj ==0 )||(dj == 1))&&(dk == 0)&&(dl == 0)&&(fi == 0)&&(upi == 1)) ||

3 ((dj == 0)&&(dl == 0)&&(fi == 0)&&(upi == 1)) ||

4 ((dj ==0 )&&(dk == 0)&&((dl == 0)&&(dl == 1))&&(fi == 0)&&(upi == 1)) )

5 -> set_di_val0

3. If process Pi has copied 0, and at least one of the following conditions holds

then process Pi changes its decision to 1: (i) Pj and Pk have decided on 1; (ii)

Pl and Pg have decided on 1; (iii) Pj and Pl have decided on 1, or (iv) Pk and

Pl have decided on 1.

1 (di == 0) && (

2 ((dj == 1 )&&(dk == 1)&&(fi == 0)&&(upi == 1)) ||

3 ((dl == 1 )&&(dg == 1)&&(fi == 0)&&(upi == 1)) ||

4 ((dj == 1 )&&(dl == 1)&&(fi == 0)&&(upi == 1)) ||

5 ((dk == 1 )&&(dl == 1)&&(fi == 0)&&(upi == 1)) ) -> set_di_val1

4. Process Pi finalizes with decision 0 if at least one of the following conditions

holds. (i) Pj has decided on 0 or Pj has not yet decided, and Pk has decided on

0, and Pl has decided on 0 or Pl has not yet decided; (ii) Pj has decided on 0

or Pj has not yet decided, and Pk has decided on 0 or Pk has not yet decided,

and Pl has decided on 0; (iii) Pj has decided on 0, and Pk has decided on 0 or

Pk has not yet decided, and Pl has decided on 0 or Pl has not yet decided.

1 (di == 0) && (

2 (((dj == 0)||(dj == -1))&&(dk == 0)&&((dl == 0)||(dl == -1))&&

3 (fi == 0)&&(upi == 1)) ||
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4 (((dj == 0)||(dj == -1))&&(dl == 0)&&((dk == 0)||(dk == -1))&&

5 (fi == 0)&&(upi == 1)) ||

6 ((dj == 0)&&((dk == 0)||(dk == -1))&&((dl == 0)||(dl == -1))&&

7 (fi == 0)&&(upi == 1)) )

8 -> set_fi_val1

5. Process Pi finalizes with decision 1 if at least one of the following conditions

holds. (i) Pj has decided on 1, and Pk has decided on 1 or Pk has not yet

decided, and Pl has decided on 1 or Pl has not yet decided; (ii) Pj has decided

on 1 or Pj has not yet decided, and Pl has decided on 1 or Pl has not yet decided,

and Pk has decided on 1; (iii) Pj has decided on 1 or Pj has not yet decided,

and Pk has decided on 1 or Pk has not yet decided, and Pl has decided on 1.

1 (di == 1) && (

2 ((dj == 1)&&((dk == 1)||(dk == -1))&&((dl == 1)||(dl == -1))&&

3 (fi == 0)&&(upi == 1)) ||

4 (((dj == 1)||(dj == -1))&&(dk == 1)&&((dl == 1)||(dl == -1))&&

5 (fi == 0)&&(upi == 1)) ||

6 (((dj == 1)||(dj == -1))&&((dk == 1)||(dk == -1))&&(dl == 1)&&

7 (fi == 0)&&(upi == 1)) )

8 -> set_fi_val1

The description of process Pj. The actions of process Pj in the fault-tolerant

agreement program are as follows:

1. If process Pj has not yet decided then it performs one of the following actions:

Pj either copies the decision of the general, or if at least two other non-generals

have decided on the same value then Pj copies their decision.

2. If process Pj has copied 1, and at least one of the following conditions holds

then process Pj changes its decision to 0: (i) Pi and Pl have decided on 0; (ii)

Pk and Pl have decided on 0, or (iii) Pi and Pk have decided on 0.
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3. If process Pj has copied 0, and at least one of the following conditions holds

then process Pj changes its decision to 1: (i) Pi and Pk have decided on 1; (ii)

Pi and Pl have decided on 1, or (iii) Pk and Pl have decided on 1.

4. Process Pj finalizes with decision 0 if at least one of the following conditions

holds: (i) Pi has decided on 0 or Pi has not yet decided, and Pk has decided on

0 or Pk has not yet decided, and Pl has decided on 0; (ii) Pi has decided on 0,

and Pk has decided on 0 or Pk has not yet decided, and Pl has decided on 0 or

Pl has not yet decided; (iii) Pi has decided on 0 or Pi has not yet decided, and

Pk has decided on 0, and Pl has decided on 0 or Pl has not yet decided.

5. Process Pj finalizes with decision 1 if at least one of the following conditions

holds: (i) Pi has decided on 1 or Pi has not yet decided, and Pk has decided on

1 or Pk has not yet decided, and Pl has decided on 1; (ii) Pi has decided on 1

or Pi has not yet decided, and Pl has decided on 1 or Pl has not yet decided,

and Pk has decided on 1; (iii) i has decided on 1, and k has decided on 1 or k

has not yet decided, and l has decided on 1 or l has not yet decided.

The description of process Pk. The actions of process Pk in the fault-tolerant

agreement program are as follows:

1. If process Pk has not yet decided then it performs one of the following actions:

Pk either copies the decision of the general, or if at least two other non-generals

have decided on the same value then Pk copies their decision.

2. If process Pk has copied 1, and at least one of the following conditions holds

then process Pk changes its decision to 0: (i) Pl and Pg have decided on 0; (ii)

Pi and Pj have decided on 0; (iii) Pj and Pl have decided on 0; (iv) Pi and Pl

have decided on 0; (v) Pj and Pg have decided on 0, or (vi) Pi and Pg have

decided on 0.
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3. If process Pk has copied 0, and at least one of the following conditions holds

then process Pk changes its decision to 1: (i) Pj and Pg have decided on 1; (ii)

Pl and Pg have decided on 1; (iii) Pi and Pj have decided on 1; (iv) Pj and Pl

have decided on 1, or (v) Pi and Pl have decided on 1.

4. Process Pk finalizes with decision 0 if at least one of the following conditions

holds: (i) Pi has decided on 0, and Pj has decided on 0 or Pj has not yet decided,

and Pl has decided on 0 or Pl has not yet decided; (ii) Pi has decided on 0 or

Pi has not yet decided, and Pj has decided on 0, and Pl has decided on 0 or Pl

has not yet decided; (iii) Pi has decided on 0 or Pi has not yet decided, and Pl

has decided on 0, and Pj has decided on 0 or Pj has not yet decided.

5. Process Pk finalizes with decision 1 if at least one of the following conditions

holds: (i) Pi has decided on 1, and Pj has decided on 1 or Pj has not yet decided,

and Pl has decided on 1 or Pl has not yet decided; (ii) Pi has decided on 1 or

Pi has not yet decided, and Pj has decided on 1 or Pj has not yet decided, and

Pl has decided on 1; (iii) Pi has decided on 1 or Pi has not yet decided, and Pl

has decided on 1 or Pl has not yet decided, and Pj has decided on 1.

The description of process Pl. The actions of process Pl in the fault-tolerant

agreement program are as follows:

1. If process Pl has not yet decided then it performs one of the following actions:

Pl either copies the decision of the general, or if at least two other non-generals

have decided on the same value then Pl copies their decision.

2. If process Pl has copied 1, and at least one of the following conditions holds

then process Pl changes its decision to 0: (i) Pi and Pg have decided on 0; (ii)

Pj and Pk have decided on 0; (iii) Pi and Pj have decided on 0; (iv) Pi and Pk

have decided on 0.
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3. If process Pl has copied 0, and at least one of the following conditions holds

then process Pl changes its decision to 1: (i) Pi and Pj have decided on 1; (ii)

Pi and Pk have decided on 1; (iii) Pj and Pk have decided on 1.

4. Process Pl finalizes with decision 0 if at least one of the following conditions

holds: (i) Pi has decided on 0, and Pj has decided on 0 or Pj has not yet decided,

and Pk has decided on 0 or Pk has not yet decided; (ii) Pi has decided on 0 or

Pi has not yet decided, and Pj has decided on 0 or Pj has not yet decided, and

Pk has decided on 0; (iii) Pi has decided on 0 or Pi has not yet decided, and Pj

has decided on 0, and Pk has decided on 0 or Pk has not yet decided.

5. Process Pl finalizes with decision 1 if at least one of the following conditions

holds: (i) Pi has decided on 1, and Pj has decided on 1 or Pj has not yet decided,

and Pk has decided on 1 or Pk has not yet decided; (ii) Pi has decided on 1 or

Pi has not yet decided, and Pj has decided on 1 or Pj has not yet decided, and

Pk has decided on 1; (iii) Pi has decided on 1 or Pi has not yet decided, and Pk

has decided on 1 or Pk has not yet decided, and Pj has decided on 1.
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