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Abstract. Several approaches exist for modeling recovery of fault-
tolerant systems during the requirements analysis phase. Most of these
approaches are inclined by design techniques for recovery. Such design-
biased analysis methods unnecessarily constrain an analyst when spec-
ifying recovery requirements. To remedy such restrictions, we present
an object analysis pattern, called the corrector pattern, that provides a
generic reusable strategy for modeling error recovery requirements in the
presence of faults. In addition to templates for constructing structural
and behavioral models of recovery requirements, the corrector pattern
also contains templates for specifying properties that can be formally
verified to ensure the consistency between recovery and functional re-
quirements. Additional property templates can be instantiated and veri-
fied to ensure the fault-tolerance of the corrector pattern and the system
to which the corrector pattern has been applied. We validate our anal-
ysis method in terms of UML diagrams, where we (1) use the corrector
pattern to model recovery in UML behavioral models, (2) generate and
model check formal models of the resulting UML models, and (3) visual-
ize the model checking results in terms of the UML diagrams to facilitate
model refinement. We demonstrate our analysis method in the context
of an industrial automotive application.
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1 Introduction
High costs and complexity of developing fault-tolerant distributed systems are
largely due to the crosscutting nature of fault-tolerance concerns and the re-
quirement for coordinated recovery by system components [1]. For example, in
a distributed embedded system, it is difficult to preserve the safety require-
ments while providing recovery from transient faults. Late characterization of
such inconsistencies between functional and fault-tolerance requirements may
potentially increase the development costs because it would be more expensive
to address such inconsistencies in design and implementation phases rather than
the requirements analysis phase. As such, systematic modeling and analysis of
error recovery is even more important. To facilitate such early modeling and
analysis, this paper presents a pattern-based approach for modeling and ana-
lyzing nonmasking fault-tolerance in embedded software systems, where, in the
ideal case, a nonmasking fault-tolerant system guarantees error recovery3.

Numerous approaches exist for the design and implementation of recov-
ery from error conditions in sequential [2, 3] and concurrent (respectively, dis-
tributed) programs [1,4,5]. For example, Randell [2] presents the concept of re-
covery blocks for implementing recovery in sequential programs and uses atomic
actions for the design of error recovery in asynchronous concurrent programs [1].
Cristian [3] focuses on the concept of exceptional conditions and systematic
handling thereof. Schneider [4] presents a replication-based method for recovery
from failures in client-server distributed systems. Saridakis [6] presents a set of
design patterns based on existing recovery mechanisms [5]. The UML profile for
fault-tolerance [7] and several aspect-oriented approaches [8–10] use redundancy
of services to mask faults, which is sometimes impractical and costly [11]. More-
over, most existing analysis methods for fault-tolerance [12–15] assume that a
specific fault-tolerance design mechanism will be used (e.g., exception handling,
redundancy) and specify analysis requirements within those design constraints.
As such, error recovery requirements may be overly constrained and preclude
useful solutions or even finding a solution. For example, it is difficult to spec-
ify and model self-stabilization [16] solely based on exception handling. While
a specific error recovery mechanism should certainly be considered at design
time based on the constraints of the problem at hand, we believe that, at the
requirements analysis level, an abstract specification of error containment and
state restoration in distributed systems helps developers to detect the inconsis-
tencies between recovery and functional requirements independent of the design
and implementation techniques.

In order to specify and analyze recovery for embedded systems, we introduce
an object analysis pattern, called the corrector pattern, that provides a reusable
strategy for eliciting and specifying error correction constraints in UML object
models. Object analysis patterns apply a similar approach to that used by design
3 We emphasize that our proposed approach facilitates the creation and analysis of

the conceptual models of nonmasking fault-tolerant systems. For such models to be
realized in practice, one has to use fault-tolerance preserving refinements to develop
design and implementation artifacts.
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patterns [17], but instead of focusing on design their focus is on late requirements
analysis where a conceptual model of a system is built. Patterns for the analysis
stage of software development are not new (see [18, 19]). For example, Fowler
[18] presents a method for characterizing recurring ideas in business modeling
as reusable analysis patterns. Konrad et al. [19] present domain-specific object
analysis patterns for analyzing the conceptual models of embedded systems.
We introduce the corrector pattern that serves to modularize the requirements
of error recovery, thereby facilitating tracing and reasoning about recovery in
different stages of system development.

Our method comprises fault modeling, recovery modeling, and automated
analysis of the UML models of fault-tolerant embedded systems. Specifically,
to construct the UML model of a nonmasking Fault-Tolerant System (FTS),
we start with the UML model of its fault-intolerant version, where a Fault-
Intolerant System (FIS) meets its functional requirements in the absence of
faults (i.e., when no faults occur) and provides no guarantees in the presence of
faults (i.e., when faults occur). Then we model faults in the UML model of the
FIS to produce a model with faults. Instead of focusing on a specific fault-type
(e.g., fail-stop, crash, Byzantine, etc.), we use the notion of state perturbation to
model different types of faults in UML state/sequence diagrams [11, 16]. Next,
we add instances of the corrector pattern to the model with faults to generate
a candidate UML model of a nonmasking FTS. To generate a valid UML model
of the nonmasking FTS, we have to ensure that the candidate UML model is
interference-free. That is, in the absence of faults, the candidate model meets
all functional requirements of the FIS, and in the presence of faults, the can-
didate model meets recovery requirements; i.e., when faults stop occurring, the
system will eventually recover from error conditions. To ensure interference-
freedom, we extend McUmber and Cheng’s UML formalization framework [20]
to generate formal specifications of the candidate model in the Promela model-
ing language [21]. Subsequently, we use the SPIN model checker [21] to detect
inconsistencies between the corrector pattern and the functional UML model.
The automated analysis with the SPIN model checker coupled with a new vi-
sualization tool, called Theseus [22], that animates counterexample traces and
generates corresponding sequence diagrams enables a roundtrip engineering pro-
cess for modeling and analyzing recovery requirements.

We demonstrate our approach by modeling and analyzing an adaptive cruise
control (ACC) system in UML. We have also validated the corrector pattern
for several other examples [23] including a diffusing computation program for
a hierarchical distributed system [24]. The remainder of this paper is organized
as follows. Section 2 presents an overview of the proposed approach. Section 3
introduces an approach to modeling faults and nonmasking fault-tolerance in
terms of UML state and sequence diagrams. Section 4 presents a systematic
method for eliciting and specifying error conditions. Section 5 presents the cor-
rector pattern. Section 6 focuses on formal analysis of the UML model of FTSs
using the model checker SPIN [21]. Section 7 discusses related work. Finally,
Section 8 gives concluding remarks and discusses future work.
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2 Overview

In this section, we present an overview (see Figure 1) of our pattern-based model-
ing approach. Figure 1 illustrates the steps of our approach (including modeling
faults, specifying error conditions, instantiating the corrector pattern, and auto-
mated analysis) annotated with the relevant paper section number on the lower
left corner of each step. For a given FIS S and a fault-type f , we start from
a valid UML model of S that captures all global properties of S that should
hold in the absence of faults f . Subsequently, we model the effect of f on each
component of S modeled as an object in UML. Then we specify the error con-
ditions that denote the set of states from where recovery should be provided.
Subsequently, to specify the requirements of detecting and correcting error con-
ditions, we compose instances of the proposed corrector pattern with the UML
model of S, which results in creating a candidate UML model of a nonmasking
version of S. To ensure the correctness of such a composition, we first employ an
extended version of the Hydra [20] formalization tool to generate the Promela
specifications of the candidate UML model. Then we use the SPIN model checker
to verify the correctness of the composition. If the model checking is successful,
then the candidate model is indeed a UML model of a nonmasking fault-tolerant
version of S. Otherwise, using the Theseus visualization tool [22], we animate
the analysis errors (illustrated as counterexamples) in the state and sequence
diagrams. Using such a visualization, we help developers to revise the candidate
model to eliminate the inconsistencies between functional and recovery require-
ments. The revised model can again be model checked until the model checking
is successful or an upper bound is reached in the number of model checking
attempts.

In our approach, we separate the functional concerns from fault-tolerance
concerns and start with a valid UML model of the FIS. The motivation behind
such a separation of concerns is two-fold. First, fault-tolerance is added only for
dealing with faults, and the added fault-tolerance concerns should not conflict
with functional requirements in the absence of faults. Second, fault-tolerance
requirements evolve as we encounter new types of faults. Thus, there exist two
options: either (1) develop from scratch a system that meets its functional re-
quirements in the absence of f and provide desired functionalities in the presence
of f , or (2) incrementally add new fault-tolerance functionalities while preserving
the existing functionalities in the absence of f . In this paper, we adopt the latter
as it seems to be less expensive than the former approach and better handles
legacy systems.

3 Modeling

In this section, we present the basic concepts of modeling FISs, faults, and
nonmasking fault-tolerance in UML. The motivation behind using UML is two-
fold. First, UML is a modeling language well-accepted in both academia and
industry. Second, since our model is based on the notion of finite state machines,
UML state diagrams enable us to capture any form of recovery that can be
expressed in a state machine-based formalism.
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Fig. 1. An overview of the proposed approach.

3.1 UML Models

We use conventional UML notations [25] to represent the UML-based conceptual
models of FISs (respectively, FTSs). Since our focus is on modeling and analyzing
nonmasking fault-tolerant embedded systems, we follow Douglass [26] in using
state/sequence diagrams to capture high-level behavioral information of UML
object models. In a UML object model M with n objects O1, · · · , On, we denote
the state transition diagram of each object Oi by SDi = < Si, δi >, where Si is
the set of states in the state diagram SDi and δi denotes the set of transitions
of SDi (1 ≤ i ≤ n). A state of an object Oi is a valuation of its state variables
(i.e., attributes). A transition is of the form (a, evt[grd]/act, b), where a and b
are states, evt denotes a triggering event, grd represents a guard condition and
act denotes an action that should be taken when a transition from a to b takes
place. A global state predicate is defined over a set of states of multiple objects.
A local state predicate is specified over the set of states of only one object Oi

(i.e., Si). A scenario is a sequence of states 〈s0, s1, · · ·〉, where each si is a state
of some object Oj (1 ≤ j ≤ n). We use UML sequence diagrams to represent
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scenarios. A behavior of an object Oj (1 ≤ j ≤ n) is a scenario 〈s0, s1, · · ·〉 such
that ∀si : i ≥ 0 : si ∈ Sj .

Underlying Computational Model. Depending on the semantics of
object interactions, the complexity of automatic analysis of an FTS varies from
polynomial (in a shared memory model [27]) to undecidable (in an asynchronous
message-passing model [28]). For example, in our previous work [29–31], we have
shown that automated analysis of fault-tolerance for models of distributed sys-
tems has an exponential complexity (in the size of the model). To facilitate an
automated analysis method with a manageable complexity, in this paper, we
consider a high atomicity model where transitions of UML state diagrams are
executed atomically and any instance of message passing between two objects
takes place in an atomic step. In cases such atomicity assumptions do not hold
(e.g., distributed systems), one can use our proposed approach for developing
a high atomicity conceptual model of the fault-tolerant system, and then use
existing tolerance-preserving refinement techniques (e.g., [32]) to generate a re-
fined model. (Such refined models can in turn be realized in the implementation
phase using existing mechanisms such as coordinated atomic actions [33].) More
importantly, if the inconsistencies of fault-tolerance and functional concerns can-
not be resolved in a high atomicity model (with atomic actions), then deriving
a refined (concrete) model of a fault-tolerant system from the conceptual model
of its fault-intolerant version would be impossible [30].

Modeling Functional Requirements. In order to model functional re-
quirements, we extend Gouda and Arora’s [34] notion of closure, where a fault-
tolerant system remains in a set of legitimate states as long as no faults have
occurred. A set of legitimate states (also called an invariant) can be computed
by identifying the set of states that are reachable by system actions from a given
set of initial states. (Techniques of how to extract an invariant from user require-
ments are beyond the scope of this paper. Examples can be found in [35,36].) In
the invariant, no system action violates its safety requirements (i.e., the system
takes no bad actions (defined by user requirements)) and liveness requirements
are satisfied. Intuitively, safety requirements stipulates that nothing bad ever
happens and the liveness requirements specify that something good will even-
tually occur. For example, in a cruise control system, the actual speed of the
car must not exceed 1% of the desired speed set by the driver (i.e., safety),
and when the driver applies the brakes, the cruise control system will eventu-
ally be deactivated (i.e., liveness). We represent safety requirements by a set
of actions, say B, that must not occur in the behaviors of any object. Since
we start with a functional model of an FIS system that meets its safety and
liveness requirements in the absence of faults (i.e., when no faults occur) and
incrementally model fault-tolerance, we do not explicitly specify liveness require-
ments. Nonetheless, we require that while modeling fault-tolerance concerns, no
deadlock states (states with no outgoing transitions) should be introduced in
the invariant. The deadlock freedom requirement captures the fact that, in the
absence of faults, embedded systems have non-terminating computations and
always react to their environment. We say a scenario 〈s0, s1, · · ·〉 meets safety
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requirements iff (if and only if) ∀i : i ≥ 0 : (si, si+1) /∈ B. A scenario 〈s0, s1, · · ·〉
meets liveness requirements iff every state si, for i ≥ 0, has a next state and some
desired conditions eventually become true in that scenario. Thus, an invariant
has two properties: (1) starting from any state in the invariant, the subsequent
states are also in the invariant (i.e., closure), and (2) from every state in the
invariant, all scenarios meet safety and liveness requirements. A UML model M
meets its functional requirements iff there exists a non-empty invariant I for M .
A functional scenario is a scenario whose states all belong to the invariant. A
recovery scenario 〈s0, s1, · · ·〉 satisfies the following condition: ∃i : i ≥ 0 : si is in
the invariant.

Running Example: Adaptive Cruise Control (ACC). The ACC
system comprises a standard cruise control system and a radar system to control
the distance between the car and the front vehicle (i.e., target vehicle) for collision
avoidance. The ACC system has different modes of operation (see Figure 2),
namely closing, coasting, matching, alarm, disengaged or resume mode. When
the radar detects a target vehicle, i.e., target mode, the ACC system enters the
closing mode. In the closing mode, the goal is to control the way that the car
approaches the target vehicle, and to keep the car in a fixed trail distance from
the target vehicle with a zero relative speed. The trail distance is the distance
that the target vehicle travels in a fixed amount of time (e.g., 2 seconds). The
distance to the target vehicle must not be less than a safety zone, which is 90%
of the trail distance. The ACC system calculates a coasting distance that is the
distance at which the car should start decelerating in order to achieve the trail
distance; i.e., the car enters the coasting mode. When the car reaches the trail
distance, the relative speed of the car should be zero; i.e., the speed of the car
matches the speed of the target vehicle, i.e., matching mode. In cases where the
speed of the car is so fast (greater than a maximum speed vmax) that a collision
is unavoidable, the ACC system must raise an alarm for the driver, i.e., the
alarm mode, and must deactivate the cruise control system, i.e., the disengaged
mode. When the radar loses the target vehicle and the cruise control system is
active, the system is in the resume mode.

Fig. 2. The adaptive cruise control system.

The ACC system comprises three main classes, namely Control, Car, and Radar

(see Figure 3). (We use Sans Serif font to denote state variables, methods and
classes.) (i) The Control class has a set of Boolean state variables that represent
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different modes of the ACC system. The Brakes state variable is set when the con-
trol receives a signal from the brakes subsystem indicating that the brakes have
been applied. The ACC system must be disengaged when the Control receives a
Brakes signal. The method setpUpdate() updates the setpoint, which is the desired
speed determined by the driver. The Radar sets Control.target to true by invoking
the targetDet() method. Depending on the computed trail distance, the Control

object also calculates the safetyZone such that the distance to the target vehicle
never becomes the safetyZone value. (ii) The Car class models the engine man-
agement functionalities (e.g., acceleration, deceleration). A Car object matches
the real speed of the car (denoted by realv) with the setpoint (using the method
matchSpeed()). The car calculates its real speed using the data received from the
speed sensors located in the car. The getRealV() method may be invoked by the
Control to receive the real speed of the car. (iii) The Radar measures the distance
of the car to the target vehicle, kept in the state variable currDist, which is also
used by the Control (by invoking Radar.getDistance()).The Radar also measures the
speed of the target vehicle (kept in Radar.targetSpeed) that can be accessed using
the Radar.getTargetSpeed() method.

+getRealV()

+matchSpeed()

+isAccelerating()

+setDisengaged()

-realv : double

-disengaged : bool

Car

+TurnOn()

+TurnOff()

+getDistance()

+getTargetSpeed()

-currDist : double

-on : bool

-targetSpeed : double

Radar

+setpUpdate()

+targetDet()

+isCoasting()

+setDistance()

-closing : bool

-coasting : bool

-matching : bool

-target : bool

-alarm : bool

-resume : bool

-setpoint : double

-Brakes : bool

-safetyZone : double

-v_max : double

Control

sampleSpeedcontrolThrottle

monitorTarget1 1

111 1

Fig. 3. Excerpted class diagram of the ACC system.

An invariant of the ACC system (denoted IACC) is a global state predicate
that specifies a set of states, in which (i) if a target vehicle has been detected then
the ACC system is in one of the following modes: closing, coasting, matching,
alarm, or disengaged; (ii) the distance with the target vehicle is greater than the
safety zone distance; (iii) if the ACC system is in the cruise mode and the target
is lost then ACC will go to the resume mode; (iv) if the driver applies the brakes
then the ACC system must be in the disengage mode, and (v) if the closing
speed of the car is greater than the maximum speed vmax, then the ACC system
must alarm the driver of a potential collision and must disengage. Therefore, the
invariant IACC is equal to the following set of states:

{s : (target(s) ⇒ (closing(s) ∨ coasting(s) ∨ matching(s) ∨ disengaged(s))) ∧
(safeyZone(s) < currDist(s)) ∧ ((¬target(s) ∧ cruise(s)) ⇒ resume(s)) ∧

(Brakes(s) ⇒ disengaged(s)) ∧
(realv(s) > vmax(s) ⇒ (alarm(s) ∧ disengaged(s)))}



A Pattern-Based Approach for Modeling and Analysis of Error Recovery 9

Notation. var(s) denotes the value of a system variable var in a state s.
Note that the above predicate is specified in terms of the variables of all

three objects. The variables target, closing, coasting, matching, resume, alarm, Brakes,

vmax and safetyZone belong to the Control object. disengaged and realv are state
variables of the Car object, and currDist is in the Radar object.

3.2 Modeling Faults in UML
In this section, we illustrate how to model faults in UML state and sequence
diagrams in the context of the ACC system. Since our focus is on the behavioral
object models, we omit the fault modeling at the class diagram level (see [23]
for details).

Modeling Faults in State Diagrams. We systematically model a fault-
type as a set of transitions in UML state diagrams (see Figure 4). Representing
faults as a set of transitions has already appeared in previous work [11,16], and
it is known that state perturbation is sufficiently expressive to represent different
types of faults (e.g., crash, input-corruption, Byzantine) from different behav-
ioral categories (e.g., transient, intermittent, permanent) [11, 16]. Moreover, we
assume that faults stop occurring in a finite amount of time so that eventually
recovery can occur [16, 37]. Depending on the occurrence of faults, we classify
faults into two categories of conditional and arbitrary faults. A conditional fault-
type is a fault-type that may occur only in particular states of the state transition
diagram of an object. An arbitrary fault-type has no precondition and may oc-
cur at any state (e.g., environmental noise). Given a conditional fault-type f , we
model the effect of f on the state diagram SDi of each object Oi by introducing
a new set of transitions in SDi denoted fi, for 1 ≤ i ≤ n (see Figure 4). We
denote the set of transitions of SDi in the presence of faults fi by δi ∪ fi. We
model an arbitrary fault-type as a separate fault state transition diagram (e.g.,
FD1 in Figure 5) that executes concurrently with an object state machine (e.g.,
SD1 in Figure 5). In Figure 5, the transitions of the arbitrary faults in FD1

may trigger at any state of the state diagram SD1. The key difference is in the
semantics of fault transitions in that an object Oi does not have control over the
execution of faults fi (see dashed arrows in Figure 4), whereas the execution of
regular transitions (see solid arrows in Figure 4) is controlled by the thread of
execution in Oi.

When modeling a fault type fi in a state diagram SDi, modelers should
identify the scope of the states reachable by a combination of fault and regular
transitions, which is called the fault-span of Oi for fault fi (denoted fi-span of
Oi) [27]. For example, in Figure 4, all error states are only reachable when faults
occur. Thus, introducing faults in a state diagram may require new states and
transitions to be added to that state diagram. In fact, given a UML model M , its
invariant I and a fault-type f , starting from I, the set of states reachable by a
combination of fault and system transitions comprises the global fault-span of M ,
denoted f -span of M . More precisely, the f -span of M has two properties: (1)
the f -span of M contains I, and (2) starting from every state in the f -span of M ,
any fault or system action will result in another state in the f -span; i.e., closure
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State1 State2

State4 State3

ErrorState_1 ErrorState_2

ErrorState_3

ErrorState_5

ErrorState_4

Object transitions Transitions of fault-type

Legend:

Invariant

Object transitions 

in the fault-spanfi

fault-span

Fig. 4. Modeling conditional faults in UML state diagrams.

of the f -span of M in the set of system and fault actions. In Figure 5, the fault-
span is identified by calculating the asynchronous automata-theoretic product of
the two state machines SD1 and FD1, which results in a new state diagram that
simultaneously includes fault and regular transitions. A behavior of an object
that originates in its fault-span outside its invariant may lead to failures (i.e.,
violate safety requirements, fall into non-progress cycles, or reach a deadlock
state). For example, in Figure 4, if the object is in State1 then the faults fi may
non-deterministically transition to ErrorState 1 from where the object may either
be trapped in a non-progress cycle (comprising ErrorState 1 and ErrorState 2) or
be deadlocked in ErrorState 5.

Object

State Transition Diagram

Fault 

State Transition Diagram

SD_1

FD_1

Fig. 5. Modeling arbitrary faults.

ACC Example: The ACC system is subject to an arbitrary fault-type fACC

that may non-deterministically set the disengaged signal in the Car object to
false. Hence, we model the effect of fACC on the Car object as a state machine
concurrent with the car state machine (see Figure 6). In this case, faults fACC
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may set the value of the Car.disengaged variable to false at any state of the Car

state diagram. Note that in the fACC state machine in Figure 6, once the fault
transition from State1 to State2 sets Car.disengaged to false, Car.disengaged remains
false until a system recovery action resets it back to true.

Modeling Faults in Sequence Diagrams. In UML sequence diagrams,
we model the effect of a fault-type fi on an object Oi as a self message to Oi that
may occur non-deterministically (see Figure 7). Such a representation of faults
in sequence diagrams is based on how faults are modeled in the state diagram
of Oi. Thus, modeling faults in SDi affects all sequence diagrams in which Oi

is involved. Such sequence diagrams represent scenarios with faults. Formally, a
scenario with fault f is a sequence of states 〈s0, s1, · · ·〉, where ∀si, si+1 : i ≥ 0 :
(((si, si+1) ∈ f) ∨ ((si, si+1) belongs to some object Oj)), for 1 ≤ j ≤ n. To
identify scenarios with faults, modelers should update every scenario in which
Oi is involved, and should discover new scenarios that take place due to the
occurrence of faults. The identification of scenarios with faults is important in
modeling the system behaviors in the presence of faults.

CalculatingRealV

if ~disengaged then Accelerate if ~disengaged then Decelerate

[(Realv > setpoint)  AND 

(~disengaged)]

[(Realv < setpoint) AND 

(~disengaged)]

[disengaged]

State1 State2

[disengaged] / 

disengaged := false

[~disengaged]

Fault transition System transition

Legend:

State

fACC   state machine

Excerpted state machine 

of the car object

Event[guard]/action
~  denotes 

     negation

Event[guard]/action

Fig. 6. Modeling faults in the state transition diagram of the car.

ACC Example: In Figure 7, once the Control detects a Brakes signal, it invokes
Car.setDisengaged() illustrating that the engine controller should be deactivated
(i.e., disengaged). However, if faults fACC occur, the disengaged flag will be reset
to false, which in turn results in the reactivation of the engine controller, possibly
resulting in acceleration while brakes are applied. This is a scenario with faults
that must be corrected.
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UML models with faults. Modeling a fault-type f in the state and
sequence diagrams of a UML model M creates a UML object model Mf that
has been augmented with fault f . We call Mf a UML model with faults f .

Comment on the complexity of modeling faults, fault-span and scenarios
with faults. The proposed modeling approach in this section includes three
main tasks, namely modeling (conditional or arbitrary) faults in state diagrams,
modeling fault-spans in state diagrams and modeling scenarios with faults. The
fault modeling task should be done manually and the other two tasks can be
automated. While modeling (conditional and arbitrary) fault transitions in state
diagrams may seem to be a tedious task for large systems, we argue that (1)
the scale of such a modeling activity does not go beyond the complexity of
modeling regular transitions in the state diagrams of all functional objects, and
(2) techniques that facilitate the modeling of regular transitions can directly
be reused to facilitate fault modeling. In cases where more than one type of
faults should be modeled, UML extension techniques (e.g., stereotyping) would
help developers to distinguish the transitions of different fault-types and their
corresponding fault-spans. Since it is difficult to manually identify all scenarios
with faults (respectively, model the fault-span of an object) and the number
of such scenarios may increase exponentially, we are currently investigating the
integration of a software tool we have previously developed [38,39], called Fault-
Tolerance Synthesizer (FTSyn), in UML as FTSyn automatically generates fault-
span and scenarios with faults from state diagrams.

3.3 Modeling Nonmasking Fault-Tolerance
In this section, we extend the definition of nonmasking fault-tolerance from
Arora [11] in the context of UML models. Intuitively, nonmasking fault-tolerance
requires recovery to the invariant after faults stop occurring [11]. More precisely,
let S be an FIS, I be an invariant of S, and f be a given fault-type perturbing
the state of S. (Note that the FIS S provides no guarantees about its behavior
when f occurs.) A system S ′ is a nonmasking f -tolerant (i.e., nonmasking fault-
tolerant against f) version of S if and only if the following conditions are satisfied:
(1) in the absence of f , the FTS S ′ meets the functional requirements specified
for S, and (2) in the presence of f , the FTS S ′ guarantees recovery to I.

Before defining what we mean by a nonmasking fault-tolerant UML model, we
define recovery scenarios. Let M be a UML model of S and I be an invariant of
S defined in M . We say a scenario σ = 〈s0, s1, · · ·〉 in M recovers to the invariant
I iff ∃i : i ≥ 0 : (si ∈ I). Note that once a state in the invariant is reached, the
closure property guarantees that the system remains in the invariant as long as
there are no faults. We say a scenario σ in the UML model M violates recovery
requirements iff σ does not recover to the invariant of M . Violation scenarios
could take place if a deadlock state or a non-progress cycle is reached due to
the occurrence of f . We say a UML model M recovers to the invariant I iff
all scenarios of M recover to I. Accordingly, a UML model M violates recovery
requirements iff there exists a scenario that violates recovery requirements. We
say a UML model M ′ (derived from M) is nonmasking f -tolerant if M ′ satisfies
the following conditions: (1) the set of functional scenarios of M ′ is a non-empty
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subset of the set of functional scenarios of M starting in a subset of I, and (2)
all scenarios with fault f recover to I.

Control Car Radar

Accelerate()

The occurrence of faults 

leads to acceleration while

brakes are applied

targetDet()

closing := true;

disengage()

Brakes := true

Ack

disengaged := false

faults occur

fACC

Fig. 7. Coasting scenario in the presence of faults fACC .

4 Specifying Error Conditions

In order to model recovery, we need to specify the set of error states from where
recovery should be provided. The notion of invariant simplifies the task of spec-
ifying error states as it characterizes the set of states from where functional
requirements are guaranteed to be met in the absence of faults. The occurrence
of faults may falsify the invariant, thereby reaching states from where failures
may occur. Thus, for a given UML model M and its invariant I, the weakest set
of error states is ¬I. However, some states in ¬I may be unreachable by either
system or fault actions. In fact, for a specific fault-type f , the set of reachable
error states is equal to the intersection of ¬I and the f -span of M . In other
words, the set of reachable error states is equal to FS − I, where FS denotes
the f -span of M . A fault-intolerant system may stay in FS − I forever for two
reasons: reaching a deadlock state or falling in a cycle whose states all belong to
FS − I (called a non-progress cycle).

In order to ensure recovery, we have to resolve deadlock states and non-
progress cycles. For programs whose processes can read and write all program
variables in an atomic step, resolving deadlock states amounts to the addition
of actions that establish the truth value of I once it is falsified. Such actions are
called convergence actions [34] as they guarantee the convergence of system be-
haviors to its invariant. Likewise, non-progress cycles can be resolved by breaking
cycles and adding convergence actions. In concurrent and distributed programs,
resolving deadlock states and non-progress cycles is a non-trivial task. To illus-
trate the complexity of providing recovery, consider a distributed program with
two processes and an invariant ((x−y) = c)∧ (y ≥ z), where x, y, and z are pro-
gram variables and c is a constant. In an error condition where the invariant does
not hold, a process that cannot read z may decrease the value of y to establish
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the equality (x − y = c) for the sake of recovery. This recovery action may po-
tentially violate the second conjunct of the invariant due to decreasing the value
of y. In such cases, convergence should be provided in a coordinated fashion. In
the above example, if y is left unchanged and each process is allowed to modify
only one of the variables x and z, then coordinated recovery is achievable. In the
next section, we present the corrector pattern, which facilitates modeling and
analysis of the recovery of concurrent and distributed programs and provides
measures to verify the correctness of such recovery.

5 Corrector Pattern
In this section, we introduce a template for the corrector pattern that we use for
modeling and analyzing nonmasking fault-tolerance. We have also developed a
corresponding detector pattern [23] to specify error detection, but due to space
constraints, we do not include it here. While design patterns are traditionally
classified in terms of structural, behavioral, and creational patterns [17], the cor-
rector pattern provides a reusable strategy (for decomposing error conditions)
that can be refined to different design mechanisms. In order to facilitate its use,
we define a template for the corrector pattern based on the fields used in the
design patterns presented by Gamma et al. [17], with modifications to reflect
analysis-level information. For example, we do not use the Implementation and
Sample Code fields. The Structure field captures structural constraints of the cor-
rector pattern represented by UML class diagrams. The corrector pattern also
includes several new fields that are added for the purpose of specifying and ana-
lyzing fault-tolerance concerns. For example, the corrector pattern includes the
Correction Requirements field that specifies a set of requirements that must be
met by the corrector pattern to ensure that the corrector pattern is itself non-
masking fault-tolerant. We also introduce the Interference-Freedom Constraints
field to guarantee that the correction occurs correctly. We use the ACC system to
demonstrate how to use the corrector pattern to add nonmasking fACC -tolerance
to the ACC system. Next, we describe the fields of the corrector pattern.

Intent. The corrector pattern formulates the problem of correcting error
conditions. More specifically, the corrector pattern captures the recurring prob-
lem of restoring the state of a computing system from one state predicate to
another (e.g., from outside an invariant to the invariant).

Correction Predicate. A correction predicate, say X, is a condition whose
truth value should be established (e.g., invariant). In a UML model M , a cor-
rection predicate is a state predicate that could be either local or global. In a
distributed system, it is difficult for an object to atomically correct a global cor-
rection predicate X in an atomic step [40]. Thus, it is desirable to decompose
X into a set of local predicates X1, · · · , Xn, and to specify the correction of X
based on the correction of X1, · · · , Xn, where each Xi (1 ≤ i ≤ n) represents the
local state of a system component. In the specification of global error conditions
we often encounter predicates representing deadlock states and non-progress cy-
cles. These error conditions often have a conjunctive form. Since a correction
predicate is the negation of an error condition, in this paper, we limit the scope
of the application of the corrector pattern to the correction of conjunctive error
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predicates. (Conjunctive predicates comprise an important class of predicates in
distributed systems [41].)

ACC Example: The occurrence of fACC may perturb the ACC system to a
state s, where the cruise control system is engaged in engine management even
though brakes have been applied. This introduces a deadlock state as long as the
brakes are applied. We represent this error condition by the conjunctive predicate
(Xcontrol ∧ ¬Xcar) that should be corrected. The correction predicate XACC is
the negation of the above error condition, i.e., XACC ≡ ¬(Xcontrol ∧ ¬Xcar) ≡
(Xcontrol ⇒ Xcar), where Xcontrol ≡ Control.Brakes and Xcar ≡ Car.disengaged.
Note that if XACC is false (i.e., error has occurred), then the invariant IACC
(specified in Section 3) is violated. To provide nonmasking fACC-tolerance, we
must ensure that the condition XACC will eventually hold after fACC stops oc-
curring. Moreover, in the context of the ACC example, there is only one way to
correct XACC ; it is by setting the state variable Car.disengaged to true (because
the state variable Control.Brakes represents a signal input to the ACC system and
cannot be changed).

Corrector Elements (Participants). We use corrector elements ci, 1 ≤
i ≤ n, such that each ci is responsible for correcting Xi. Each corrector element
4 ci, for 1 ≤ i ≤ n, is indeed a participant of the corrector pattern and has its
own correction predicate Xi.

Distinguished Element. An element cindex (1 ≤ index ≤ n) that estab-
lishes the correction of X based on the correction of X1, · · · , Xn is called the
distinguished element. That is, the distinguished element finalizes the correction
of a global predicate based on the correction of its participants.

Structure. We present two basic structures for the corrector pattern:
sequential and parallel. The correction of X can be done either (i) sequentially,
where participants ci, for 1 ≤ i ≤ n, correct their correction predicates Xi one
after another, or (ii) in parallel, where all elements ci, 1 ≤ i ≤ n, correct their
correction predicates concurrently. For example, if the inter-object associations
in a UML object model form a linear (respectively, hierarchical) structure then a
sequential (respectively, parallel) corrector is more appropriate. We illustrate the
structure of the sequential corrector pattern in Figure 8. The shadowed objects
represent the elements of the corrector pattern encapsulated in a dashed box
that denotes an instance of the corrector pattern. The distinguished element of
the corrector pattern is depicted by the dark shading.

In Figure 8, each corrector participant ci is associated with an object objecti
in which the predicate Xi (1 ≤ i ≤ n) should be corrected. (Note that objecti
may be associated with more than one corrector element, each belonging to a dif-
ferent instance of the corrector pattern.) The distinguished element is associated
with the participant cn, which establishes the correction of Xn and X. Figure 9
4 In the design and implementation phases, the corrector elements may be realized as

independent software/hardware components that execute concurrently with other
components of an embedded system. We conjecture that any additional execution
overhead on system performance incurred by adding corrector elements would not
be worse than the use of conventional redundancy mechanisms.
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Fig. 8. The structure of the sequential corrector.

illustrates the application of an instance of the sequential corrector to the UML
model of the ACC system. The inter-connection of the functional objects in the
functional model of the FIS system plays a factor as to which corrector pattern
should be applied (sequential, parallel or a combination of both). For example,
if the associations between the functional objects constitute a linear structure,
then a sequential corrector is more appropriate, whereas for the case of hier-
archical associations between functional objects (e.g., tree-like associations), a
parallel corrector would be instantiated. Moreover, a combination of sequential
and parallel correctors may also be used for the correction of a predicate. Due
to space constraints, we omit the presentation of such combinations and the
parallel corrector (see [23] for details).

controlThrottle

c_car

detect_Brakes correct_disengaged

CarControl

c_control

11

witnesses

distinguished element

Fig. 9. Composition of a sequential corrector pattern with the ACC system.

Witness Predicate. Since we decompose the global correction predicate
X into a set of local correction predicates X1, · · · , Xn, we should specify what
implies the truth value of X. Towards this end, we introduce the notion of
a witness predicate Z that is a local condition belonging to the distinguished
element of the corrector pattern. The truth value of the witness predicate is an
indication that X has been corrected. We also consider a witness predicate Zi
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for each element ci to represent that ci corrects Xi. We say ci witnesses iff Zi

is true. In the case of the sequential corrector, the distinguished element cindex

(i.e., cn) sets the value of Zindex (i.e., Zn) to true if c1, · · · , cn−1 witness their
correction predicates and Xn holds.

Invariant. The invariant of the correction pattern is a state predicate IC
such that IC = {s : Zi(s) ⇒ (∀j : 1 ≤ j < i : Zj(s))}. Intuitively, it means
that, in an invariant state s, if a corrector element ci witnesses, then all its
predecessors should also witness.

Correction Requirements. In order to ensure the recovery of the com-
position of an instance of the corrector pattern with the UML model of an FIS,
the corrector pattern and its participants should meet the following require-
ments (adapted from [42]): (1) Safeness. It is never the case that the witness
predicate Z is true when the correction predicate X is false; i.e., the corrector
pattern never lies. (2) Progress. It is always the case that if X becomes true
then Z will eventually hold. (3) Stability. It is always the case that once Z be-
comes true, it will remain true as long as the predicate X is true (i.e., Z remains
stable). (4) Convergence. The correction predicate X will eventually hold and
will continuously remain true. Each participant ci should also meet the above
requirements for Zi and Xi. The first three requirements (safeness, stability, and
progress) specify the requirements for the detection of the predicate X while the
convergence states that X will eventually hold. A pattern that only meets the
safeness, progress and stability requirements guarantees to detect the correction
predicate X if it ever holds, but does not guarantee to establish X if it is falsified.
In special instances of the corrector pattern, we may have some participants ci

that perform only as a detector.
The correction requirements can be specified in Linear Temporal Logic (LTL)

[43] using (i) the universal operator 2, where 2Y means that the state predicate
Y always holds; (ii) the next state operator ©, where ©Y means that in the
next state Y holds, and (iii) the eventuality operator 3, where 3Y means that
the state predicate Y eventually holds. We respectively specify safeness and
stability as 2(Z ⇒ X) and 2(Z ⇒ (©(Z ∨ ¬X))). We specify progress as the
following LTL expression: 2(X ⇒ 3Z) and the LTL formula 3(2X) specifies
the convergence requirement. Note that the correction requirements can also be
specified using Dwyer et al. [44] specification patterns. For example, the safeness
and stability can be represented in terms of the Universality specification pattern
defined by Dwyer et al. [44].

ACC Example: The instance of the corrector pattern applied to the ACC sys-
tem comprises two elements ccontrol and ccar modeled as two new objects in the
UML model of the ACC system (see Figure 9). The element ccontrol behaves as
a detector that only monitors the state of the Control.Brakes signal (i.e., detects
Xcontrol) and the element ccar should correct Xcar when it is false; i.e., when
Car.disengaged is false, it should be set to true. The element ccontrol sets its witness
predicate Zcontrol to true when Xcontrol holds; i.e., when brakes are applied. The
element ccar sets its witness predicate Zcar to true when Xcontrol and Xcar hold.
The invariant of the corrector pattern is equal to Zcar ⇒ Zcontrol. More specifi-
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cally, ccar continuously checks with ccontrol to see whether brakes are applied or
not. If ccontrol witnesses, then ccar corrects its correction predicate (i.e., Xcar ≡
Car.disengaged) if necessary. Such a correction is established by a local corrective
action that sets the state variable Car.disengaged and the witness predicate Zcar

to true.
Behavior. Figure 10 depicts a strategy for correcting a predicate X ≡

(X1 ∧X2 ∧ · · · ∧Xn) in a sequential fashion. The distinguished element can wit-
ness if all its predecessors c1, · · · , cn−1 have already witnessed their correction
predicates. In other words, if Z holds then Z1 ∧ · · · ∧Zn must hold as well. Note
that, for simplicity, there are no timing requirements in Figure 10, and all par-
ticipants execute asynchronously. Notice that, for nonmasking fault-tolerance,
we do not explicitly impose any order on the recovery of corrector elements as
long as progress and convergence requirements are satisfied and recovery to the
invariant is guaranteed. Nonetheless, depending on the problem at hand, satis-
fying the above requirements may require us to impose a specific recovery order
in that which element should recover first. For example, in a token ring protocol,
the direction of token circulation should be consistent with order of recovering
elements.

c_1 c_(n-2) c_(n-1) c_n.  .  .

corrected?

corrected?

c_2

corrected?

.  .  .

witness

Distinguished 

element

Yes

Yes

Yes

Fig. 10. The behavior of a sequential corrector.

ACC Example: In Figure 11, the element ccontrol continuously checks the
state of the Control object to determine whether or not the brakes have been ap-
plied. The ccar corrector element also monitors the state of the Car object to
check whether or not the cruise control system is disengaged. Before the distin-
guished element ccar witnesses (i.e., sets Zcar to true), it checks the truth value
of Zcontrol. If Zcontrol is true and Xcar is false (i.e., Car.disengaged = false),
then ccar establishes its correction predicate (i.e., sets Car.disengaged to true) and
witnesses.

Consequences (Interference). We say the corrector pattern interferes
with the UML model of the FIS iff in the absence of faults the candidate model
violates the safety requirements of the FIS or causes the FIS to deadlock (i.e.,
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violates the functional requirements of the FIS). We also say the UML model
interferes with the corrector pattern iff in the presence of faults the candidate
model violates safeness, stability, progress or the convergence of the corrector
pattern. Intuitively, since we use the corrector pattern to correct the invariant of
a system, an instance of the corrector pattern will execute only when the invari-
ant of the system does not hold. Thus, as long as the system is functioning in its
invariant the corrector pattern will not execute any actions, thereby preventing
any interference. However, once the state of the system is perturbed outside its
invariant, we may have a concurrent execution of the system actions and the
actions of the corrector pattern. Since we are only dealing with deadlocks and
non-progress cycles, we have two cases to investigate. If the system reaches a
deadlock state outside its invariant, then only the corrector elements will be ac-
tive, thereby no interference will occur (because the FIS is deadlocked) and the
corrector pattern guarantees to reestablish the system invariant. In the case of
non-progress cycles, an interference-free composition of the functional model and
the corrector pattern guarantees the progress and convergence of the corrector
pattern, which in turn leads to breaking the cycle by a gradual reestablishment
of the invariant predicate.

Control Car

fACC
disengaged := 

false;

c_control c_car

setBrakes()

Brakes?

Yes

Disengaged?

No

witnesses()

Yes

setDisengaged()
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state of the ACC system 

outside its invariant

local corrective

action

Fig. 11. The behavior of the sequential corrector applied to the ACC system.

Nonmasking fault-tolerance of the corrector pattern. Since the
instances of the corrector pattern are also subject to faults, we must ensure
that the corrector pattern is itself nonmasking fault-tolerant to the effect of
faults. To guarantee the nonmasking fault-tolerance of the corrector pattern,
the progress and convergence of the corrector pattern should be met. This is
because when faults occur the only requirement for the corrector pattern is to
eventually recover to its invariant IC . For example, if faults occur after some
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corrector element ci (i > 1) witnesses, then the witness predicate of some cj ,
for 1 ≤ j < i, may be falsified due to the effect of faults. As a result, the
invariant Zi ⇒ (∀j : 1 ≤ j < i : Zj) will no longer hold. However, since Xj holds
(notice that Zj was set to true because Xj had become true at some point), after
faults stop occurring, the progress property of the element cj guarantees that Zj

will again become true, thereby resulting in the recovery of the entire corrector
pattern to its invariant IC . In another scenario, the effect of faults may cause Zi

to become true while none of its predecessors has witnessed, thereby violating
the invariant predicate IC . (In this case, faults directly violate the safety of
the corrector pattern, which is not a concern since recovery to the important
is the only requirement.) Since the convergence requirement guarantees that all
predecessors of ci will eventually witness, the invariant IC will eventually be
established. Therefore, a design of the corrector pattern that meets the progress
and convergence requirements is itself nonmasking fault-tolerant to the effect of
faults.

ACC Example: The effect of fACC faults on the corrector pattern applied to
the ACC system is that faults may corrupt the value of the witness predicates
Zcontrol and Zcar to false. The progress of the corrector element ccontrol guar-
antees that the corrector pattern will recover to its invariant Zcar ⇒ Zcontrol if
Zcar holds and Zcontrol has been falsified by faults.

Remark. In this section, we only considered the application of an instance of
the corrector pattern for the ACC system. While the ACC example is small, the
number of the elements of an instance of the corrector pattern cannot go beyond
the number of system components. Moreover, for nonmasking fault-tolerance, it
is often the case that only one instance of the corrector pattern should be instan-
tiated to model the correction of the violations of system invariant. As a result,
at most one corrector element will be composed with each system component,
which does not hinder the scalability of our approach. Moreover, even though
composing a corrector pattern with the functional model of an FIS system may
add a layer of complexity, the modularity provided by the corrector pattern
facilitates the management of such complexity. (Besides, other pattern-driven
methods may also suffer from this additional layer of complexity introduced by
pattern instantiation.)

6 Generating Promela Code and Automated Analysis

In order to enable rigorous analysis of modeling artifacts in model-driven de-
velopment of fault-tolerant systems, we generate formal specifications of UML
models and use model checkers for detecting the inconsistencies between fault-
tolerance and functional requirements. Towards this end, we extend the Hydra
UML formalization framework [20] to generate the formal specification of the
UML models of FTSs in the Promela modeling language [21]. Hydra [20] is
a generic framework for generating formal specifications from UML diagrams.
Promela is a language for modeling concurrent and distributed programs in the
model checker SPIN [21]. The syntax of Promela is based on the C programming
language. A Promela model comprises (1) a set of variables, (2) a set of (con-
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current) processes modeled by a predefined type, called proctype, and (3) a set
of asynchronous and synchronous channels for inter-process communications.

Hydra uses a set of mapping rules (see Figure 12) to translate the entities in
a UML metamodel to the entities in a Promela metamodel. For example, Hy-
dra translates each UML object to a proctype in Promela. Thus, each element
ci of the corrector pattern will be formalized as a separate process that is con-
currently executed with the processes that represent UML functional objects.
The transitions of the state diagram of each object are formalized as the atomic
actions of the corresponding process in Promela. The inter-object associations
at the UML level are formalized as message exchange channels in Promela.

Extending Hydra for fault formalization. In UML state diagrams, we
distinguish fault transitions from regular transitions by defining a Fault stereo-
type [25]. The extended Hydra treats the transitions of a fault-type f differently
than other transitions in that it integrates the transitions of f (modeled in differ-
ent state diagrams) in a separate process Fault f in Promela that is concurrently
executed with all other processes. Such a formalization is advantageous in that
the resulting Promela model separates faults from the functional part of the
Promela specifications so that the effect of faults on system behaviors can easily
be simulated and analyzed.

UML Metamodel Entity Promela Metamodel Entity 
Object                      →      proctype 

Instance variable →             Variable 
Association →             Channel 

Generalization →       Duplicated proctype 
State  →            State block 

Composite State →            proctype 
Concurrent Composite State →      Concurrent proctypes 

Transition →            Transition 
 Fig. 12. An excerpted set of formalization rules in Hydra [20].

Analysis. We use the SPIN model checker to simulate and verify the
Promela specifications generated by Hydra. Moreover, we visualize the results of
checking Promela models in UML state/sequence diagrams. For example, while
verifying the UML model of an FTS against interference-freedom constraints,
we may find counterexamples that represent the inconsistencies of the corrector
pattern and the functional objects. To analyze such inconsistencies, we use SPIN
to simulate the counterexamples and use Theseus [22] to visualize each step of
the SPIN simulation in UML state/sequence diagrams. Such a visualization of
counterexamples facilitates the analysis and refinement of UML models.

ACC Example: In the formalization of the UML model of the ACC sys-
tem, five proctypes are generated corresponding to the Control, Car and Radar

objects and the corrector elements ccontrol and ccar. Fault formalization re-
sults in the generation of a Fault ACC proctype that, when executed, may non-
deterministically set the values of Car.disengaged, Zcontrol and Zcar to false. To
verify the nonmasking fault-tolerance of the candidate model (i.e., the composi-
tion of the UML model and the corrector pattern), we first verify the invariant
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IACC as an assertion, without including the Fault ACC proctype in the generated
Promela model (i.e., model in the absence of faults). The corresponding LTL
property is specified as 2(IACC), which was verified in the absence of faults. We
also verify that, in the absence of faults, the candidate model does not deadlock.
This ensures that the corrector pattern does not interference with the functional
model in the absence of faults. Afterwards, we verified the progress (denoted
2(XACC ⇒ 3Zcar)) and the convergence (denoted 3(2XACC)) of the corrector
pattern while including the Fault ACC proctype in the Promela model in order to
ensure that the corrector pattern is itself nonmasking fault-tolerant. The reach-
ability of the invariant IACC is also ensured by the convergence of the corrector
pattern; i.e., the candidate model eventually recovers to its invariant. In the ver-
ification of interference-freedom constraints, we encountered a counterexample
in which the safety of ccontrol was violated. Since ccontrol is instantiated as a
detector, we had to modify the model so that this inconsistency is resolved. The
Theseus [22] visualization tool highlighted a set of safety-violating transitions in
the system state diagram that would reach to a state where Control.Brakes was
false, but Zcontrol had remained true. Hence, to resolve this inconsistency, we
modified such safety-violating transitions by adding some falsification actions
that would atomically set Zcontrol to false if the brakes were no longer applied.
Notice that, in this case, resolving the inconsistencies of the corrector pattern
and the functional model required a change in the behavior of functional model.
Such modifications illustrate how the addition of fault-tolerance concerns may
require some changes in functional requirements.

7 Related Work
In this section, we discuss related work for modeling and analysis of error re-
covery. Several approaches [45,46] exist for modeling and analyzing dependabil-
ity aspects most of which focus on system availability and reliability without
providing a reusable artifact for specifying error recovery. For example, Lopez-
Benitez [45] presents a technique based on stochastic Petri nets for modeling and
analysis of local and global system availability in the presence of node and com-
munication link failures. Huszerl and Majzik [47] generate stochastic Petri nets
from UML state charts in order to provide quantitative measures for comparing
different redundancy management strategies against crash failures. Bondavalli
et al. [46] present an approach for dependability analysis in both structural
and behavioral UML models based on an intermediate Petri net model gener-
ated from UML diagrams. While they also model faults as timed transitions in
Petri net models and generate a tool-independent intermediate Petri net model
from UML diagrams, their approach for modeling fault-tolerance is based on
exception handling and replication, whereas the corrector pattern provides an
abstract reusable modeling artifact, which can be refined to a fault-tolerance
design mechanism (e.g., exception handling).

In error recovery based on exception handling [48–51], the focus is on the
design of systems that tolerate exceptional conditions by systematic exception
resolution. For example, Xu et al. [48] formally model exception handling in dis-
tributed systems and use coordinated atomic actions [52] to provide a distributed
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mechanism for exception resolution. Garcia and Beder and Rubira [50,51] sepa-
rate the concern of exception handling from functional concerns by introducing
a meta-level architecture that captures the logic of exception handling in con-
current and distributed systems. While their approach provides a set of patterns
for designing different tasks involved in exception handling, no measures are
provided for ensuring the fault-tolerance of exception handlers and for verify-
ing the interaction between error recovery and functional concerns in concurrent
systems.

In addition to the above approaches, several formal models for error recovery
exist in the literature [34,38,42,53,54] that provide a foundation for automated
analysis of error recovery. Arora and Gouda [34] introduce the notion of conver-
gence that presents a generic point of view of recovery in the presence of different
types of faults. Based on Arora and Gouda’s [34] work, Arora and Kulkarni [42]
show that a wide range of legacy fault-tolerance mechanisms can be captured
by two basic fault-tolerance components, namely detectors and correctors, based
on which we have presented two fault-tolerance analysis patterns [23]. Belli and
Grosspietsch [53] provide a hybrid formal framework for modeling and specifying
fault-tolerance against erroneous inputs and design flaws, where they use Petri
nets for hierarchical specification of concurrent systems and regular expressions
for specifying low-level system actions. Magee and Maibaum [54] use modal
action logic to specify and verify fault-tolerance in component-based systems,
where they adopt a state-based model in partitioning the system state space to
the set of normal and abnormal states. Aforementioned approaches provide for-
mal frameworks for specifying and analyzing fault-tolerance concerns, whereas
the corrector pattern provides a semi-formal means for capturing and specifying
fault-tolerance concerns in earlier stages of the system development lifecycle.

In summary, the corrector pattern provides a design-independent abstrac-
tion for capturing the requirements of error recovery before any design decision
is made. Such an abstraction simplifies the task of modeling as the focus is
on identifying constraints (i.e., correction predicates) that should be satisfied
by a fault-tolerant system independent of what design mechanism is used for
providing recovery. Moreover, the use of the corrector pattern enables modular
specification and analysis of recovery requirements, which in turn simplifies the
traceability of recovery from requirements analysis to design and implementation
phases. In addition to providing a means for early modeling of recovery, we are in-
vestigating the application of techniques for the addition of fault-tolerance [38]
in automatic specification and instantiation of the corrector pattern in UML
state diagrams.

8 Conclusions and Future Work
In this paper, we introduced an object analysis pattern, called the corrector
pattern, for modeling and analyzing nonmasking fault-tolerance, where a non-
masking fault-tolerant program guarantees to recover from error conditions to
a set of legitimate states (called invariant). Instances of the corrector pattern
are added to the UML model of a system to create the UML model of its
fault-tolerant version. The corrector pattern also provides a set of constraints
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for verifying the consistency of functional and fault-tolerance requirements and
the fault-tolerance of the corrector pattern itself. We extended McUmber and
Cheng’s UML formalization framework [20] to generate formal specifications of
the UML model of fault-tolerant systems in Promela [21]. Subsequently, we used
the SPIN model checker [21] to detect the inconsistencies between fault-tolerance
and functional requirements. To facilitate the automated analysis of nonmasking
fault-tolerance, we employed the Theseus visualization tool [22] that animates
counterexample traces and generates corresponding sequence diagrams at the
UML level. Even though in this paper we presented only the corrector pattern
for specifying nonmasking fault-tolerance, we have also developed a companion
detector pattern [23] for modeling failsafe fault-tolerance, where a failsafe fault-
tolerant system guarantees safety even when faults occur. The use of the detector
and corrector patterns simplifies and modularizes fault-tolerance concerns and
helps to separate the analysis of functional and fault-tolerance concerns, while
providing a means to analyze their mutual impact. As an extension of this work,
we are investigating the application of a synthesis tool that we have previously
developed (called Fault-Tolerance Synthesizer [39]) in automating the identifica-
tion of the fault-span, scenarios with faults, and the instantiation of the corrector
pattern.
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